1
|
Calderan A, Falchi R, Braidotti R, Tonidandel L, Larcher R, Sivilotti P. Using In Vitro Cultured Berries to Unravel the Effects of Heat- and ABA-Induced Stress on Thiol Precursor Biosynthesis in Sauvignon Blanc. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14547-14556. [PMID: 38907715 DOI: 10.1021/acs.jafc.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Global warming, heat waves, and seasonal drought pose serious threats to crops, such as grapevine, that are valued for their secondary metabolites, which are of primary importance for the wine industry. Discriminating the effects of distinct environmental factors in the open field is challenging. In the present study, in vitro cultured berries of Sauvignon Blanc were exposed to individual and combined stress factors to investigate the effects on the biosynthesis of the thiol precursors. Our results confirm the complexity and extreme reactivity of the accumulation process in grapes. However, they also indicate that heat stress has a positive effect on the production of the Cys-3SH precursor. Moreover, we identified several candidate genes, such as VvGSTs and VvGGT that are potentially involved in biosynthesis and consistently modulated. Nonetheless, we were unable to conclusively determine the effects of stresses on the biosynthesis of other precursors nor could we formulate hypotheses regarding their regulation.
Collapse
Affiliation(s)
- Alberto Calderan
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Riccardo Braidotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Loris Tonidandel
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige 38010, Italy
| | - Roberto Larcher
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige 38010, Italy
| | - Paolo Sivilotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
2
|
Chen J, Wang J, Liu L, Pei Y, Liu Z, Feng X, Li X. Transcriptomic and metabolomic profiling provide insight into the role of sugars and hormones in leaf senescence of Pinellia ternata. PLANT CELL REPORTS 2024; 43:125. [PMID: 38647720 DOI: 10.1007/s00299-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
KEY MESSAGE The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.
Collapse
Affiliation(s)
- Jialei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Henan University of Chinese Traditional Medicine, Zhengzhou, China
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Guizhou University of Chinese Traditional Medicine, Guiyang, China
| | - Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
- School of Pharmacy, Henan University of Chinese Traditional Medicine, Zhengzhou, China.
| |
Collapse
|
3
|
Lan G, Ma W, Nai G, Liang G, Lu S, Ma Z, Mao J, Chen B. Grape SnRK2.7 Positively Regulates Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:4473. [PMID: 38674058 PMCID: PMC11049990 DOI: 10.3390/ijms25084473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. Ultimately, VvSnRK2.7 was heterologously expressed in Arabidopsis thaliana, and the relative conductivity, MDA content, antioxidant enzyme activity, and sugar content of the transgenic plants were determined under drought treatment. In addition, the expression levels of VvSnRK2.7 in Arabidopsis were analyzed. The results showed that the VvSnRK2.7-EGFP fusion protein was mainly located in the cell membrane and nucleus of tobacco leaves. In addition, the VvSnRK2.7 protein had an interactive relationship with the VvbZIP protein during the Y2H assay. The expression levels of VvSnRK2.7 and the antioxidant enzyme activities and sugar contents of the transgenic lines were higher than those of the wild type under drought treatment. Moreover, the relative conductivity and MDA content were lower than those of the wild type. The results indicate that VvSnRK2.7 may activate the enzyme activity of the antioxidant enzyme system, maintain normal cellular physiological metabolism, stabilize the berry sugar metabolism pathway under drought stress, and promote sugar accumulation to improve plant resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Zhan Z, Zhang Y, Geng K, Xue X, Deloire A, Li D, Wang Z. Effects of Vine Water Status on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway-Related Amino Acids in Marselan ( Vitis vinifera L.) Grape Berries. Foods 2023; 12:4191. [PMID: 38231685 DOI: 10.3390/foods12234191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024] Open
Abstract
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects of vine water status on the biosynthesis and degradation of berry malic acid and the potential downstream effects on berry metabolism. This study was conducted over two growing seasons in 2021 and 2022, comprising three watering regimes: no water stress (CK), light water stress (LWS), and moderate water stress (MWS). Compared to CK, a significantly higher level of malic acid was found in berries from the MWS treatment when the berry was still hard and green (E-L 33) in both years. However, water stress reduced the malic acid content at the ripe berry harvest (E-L 38) stage. The activities of NAD-malate dehydrogenase (NAD-MDH) and pyruvate kinase (PK) were enhanced by water stress. Except for the E-L 33 stage, the activity of phosphoenolpyruvate carboxylase (PEPC) was reduced by water stress. The highest phosphoenolpyruvate carboxykinase (PEPCK) activity was observed at the berry veraison (E-L 35) stage and coincided with the onset of a decrease in the malate content. Meanwhile, the expression of VvPEPCK was consistent with its enzyme activity. This study showed that water stress changed the content of some free amino acids (GABA, proline, leucine, aspartate, and glutamate), two of which (glutamate and GABA) are primary metabolites of the GABA pathway.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Ningxia Wine and Desertifcation Control Vocational and Technical College, Yinchuan 750199, China
| | - Yanxia Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Shanxi Academy Agricultural Sciences, Pomology Institute, Shanxi Agricultural University, Taiyuan 030006, China
| | - Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaobin Xue
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Alain Deloire
- Department of Biology-Ecology, L'Institut Agro, University of Montpellier, 34060 Montpellier, France
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|