1
|
Chen D, Fang M, Huang E, Quan H, Zhang L, He Y, Zhou X, Ma B, Yuan X, Li J. DNA Methylation Mediates the Transcription of STAT4 to Regulate KISS1 During Follicular Development. Cells 2025; 14:523. [PMID: 40214477 PMCID: PMC11989168 DOI: 10.3390/cells14070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Maturation of follicles is the primary condition for the initiation of puberty, and excessive apoptosis of granulosa cells (GCs) will hinder the normal development of follicles in pigs. Signal Transducer and Activator of Transcription 4 (STAT4) plays an important role in cell proliferation and apoptosis. However, the mechanism of DNA methylation regulating STAT4 transcription and affecting follicle development in pigs remains unclear. To resolve this problem, we constructed a STAT4 overexpression vector and interference fragment to explore the effects of STAT4 on GC function and investigate the effects of changes in methylation status of the STAT4 promoter region on cell function and kisspeptin-1 (KISS1) expression, as well as the STAT4 effects on the development of the follicles of pigs and mice in vitro. We found that the expression of STAT4 decreased, while DNA methylation of the STAT4 promoter region increased with the growth of the follicles. After overexpression of STAT4, the apoptosis of GCs was increased but the proliferation, cell cycle and estrogen secretion of GCs were inhibited. When GCs were treated with DNA methyltransferase inhibitor (5-Aza-CdR), the methylation of the STAT4 promoter region decreased, resulting in a significant increase in the expression of STAT4. Consequently, the expression of KISS1 was inhibited. At the same time, the expressions of genes related to cell proliferation, cell cycle and estrogen secretion signaling pathways decreased, while the expressions of genes related to the apoptosis signaling pathway increased. After infection with the STAT4 lentiviral vector (LV-STAT4) in follicles of mice, the expression of STAT4 in ovaries of mice significantly increased, and the expression of KISS1 was significantly decreased. The capillaries on the surface of follicles were constricted, the age of puberty onset in mice was delayed while the levels of GnRH, LH, FSH and E2 in serum were decreased. In conclusion, we found that reduced methylation status of the STAT4 promoter region promoted the transcription of STAT4 and then inhibited the expression of KISS1, as well as promoted the apoptosis of GCs and ultimately inhibited the normal development of follicles in mammals.
Collapse
Affiliation(s)
- Danxia Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Ming Fang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Enyuan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Hongyan Quan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Liuhong Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Yingting He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Xiaofeng Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Bin Ma
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia;
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia;
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
2
|
Li N, Yun B, Zeng L, Lv Y, Zhou Y, Fang M, Li S, Chen Y, Huang E, Zhang L, Jiang Y, Zhang H, Li J, Yuan X. The antisense lncRNA of TAB2 that prevents oxidative stress to enhance the follicular growth in mammals. Commun Biol 2024; 7:1246. [PMID: 39358475 PMCID: PMC11447032 DOI: 10.1038/s42003-024-06960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
LncRNAs are highly implicated in oxidative stress (OS) during the growth of mammalian follicles. TAK1 binding protein 2 gene (TAB2) has been suggested to involve in the normal apoptosis and proliferation of granulosa cells (GCs), the main supporting cells in ovarian follicles. In this study, we found that TAB2 increased the expressions of SOD1, P50, and P65 to suppress the OS, thereby inhibiting the apoptosis and promoting the proliferation in GCs. Notably, DNMTs appeared to mediate the expression of TAB2 without the changes of DNA methylation at TAB2's promoter. We identified an antisense lncRNA of TAB2, discovered that DNA methylation regulated the transcription of TAB2-AS in GCs, and found TAB2-AS medicated the follicular growth of ovaries in vivo. Mechanistically, the hypomethylation of the CpG site (-1759/-1760) activated the transcription of TAB2-AS, and the 1-155 nt and 156-241 nt of TAB2-AS were respectively complementary to 4368-4534 nt and 4215-4300 nt of TAB2's mRNA to increase the expression of TAB2. Moreover, TAB2-AS inhibited the OS and apoptosis of GCs, while promoted the proliferation of GCs to expedite the follicular growth, which was in line with that of TAB2. Collectively, these findings revealed the antisense lncRNA mechanism mediated by DNA methylation, and TAB2-AS might be the target to control OS during follicular growth in mammals.
Collapse
Affiliation(s)
- Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Bing Yun
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Liqing Zeng
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuanyuan Lv
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yinqi Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ming Fang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongcai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Enyuan Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Liuhong Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yao Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, 6149, Australia
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
3
|
Wu H, Zhou W, Liu H, Cui X, Ma W, Wu H, Li G, Wang L, Zhang J, Zhang X, Ji P, Lian Z, Liu G. Whole-genome methylation analysis reveals epigenetic variation between wild-type and nontransgenic cloned, ASMT transgenic cloned dairy goats generated by the somatic cell nuclear transfer. J Anim Sci Biotechnol 2022; 13:145. [PMID: 36434676 PMCID: PMC9701027 DOI: 10.1186/s40104-022-00764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND SCNT (somatic cell nuclear transfer) is of great significance to biological research and also to the livestock breeding. However, the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods. This indicates the potential epigenetic variations between them. DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences. In this study, ASMT (acetylserotonin-O-methyltransferase) ovarian overexpression transgenic goat was produced by using SCNT. To investigate whether there are epigenetic differences between cloned and WT (wild type) goats, WGBS (whole-genome bisulfite sequencing) was used to measure the whole-genome methylation of these animals. RESULTS It is observed that the different mCpG sites are mainly present in the intergenic and intronic regions between cloned and WT animals, and their CG-type methylation sites are strongly correlated. DMR (differentially methylated region) lengths are located around 1000 bp, mainly distributed in the exonic, intergenic and intronic functional domains. A total of 56 and 36 DMGs (differentially methylated genes) were identified by GO and KEGG databases, respectively. Functional annotation showed that DMGs were enriched in biological-process, cellular-component, molecular-function and other signaling pathways. A total of 10 identical genes related to growth and development were identified in GO and KEGG databases. CONCLUSION The differences in methylation genes among the tested animals have been identified. A total of 10 DMGs associated with growth and development were identified between cloned and WT animals. The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT. These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology, particularly in goats.
Collapse
Affiliation(s)
- Hao Wu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,Sany Institute of China Agricultural University, Sanya, 572025 China
| | - Wendi Zhou
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haijun Liu
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Xudai Cui
- Qingdao Senmiao Industrial Co., Ltd., Qingdao, 266101 China
| | - Wenkui Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haixin Wu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guangdong Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Likai Wang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Pengyun Ji
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guoshi Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,Sany Institute of China Agricultural University, Sanya, 572025 China
| |
Collapse
|
4
|
Fan Y, Ren C, Deng K, Zhang Z, Li J, Deng M, Zhang Y, Wang F. The regulation of LncRNA GTL2 expression by DNA methylation during sheep skeletal muscle development. Genomics 2022; 114:110453. [PMID: 36030023 DOI: 10.1016/j.ygeno.2022.110453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
DNA methylation has crucial roles in regulating the expression of genes involved in skeletal muscle development. However, the DNA methylation pattern of lncRNA during sheep skeletal muscle development remains unclear. This study investigated previous WGBS and LncRNA data in skeletal muscle of sheep (fetus and adult). We then focused on LncRNA GTL2, which is differentially expressed in skeletal muscle and has multiple DMRs. We found that the expression level of GTL2 decreased with age. GTL2 DMRs methylation levels were significantly higher in adult muscle than in fetal muscle. After 5AZA treatment, GTL2 expression was significantly increased in a dose-dependent manner.The dCas9-DNMT3A-sgRNA significantly reduced the expression level of GTL2 in cells, but increased GTL2 DMR methylation levels. The above studies indicate that dCas9-DNMT3A can effectively increase the methylation level in the DMR region of GTL2, the expression level of GTL2 is regulated by DNA methylation during muscle development.
Collapse
Affiliation(s)
- Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Juan Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Kong W, Li H, Xie L, Cui G, Gu W, Zhang H, Ma W, Zhou Y. LncRNA MCF2L-AS1 aggravates the malignant development of colorectal cancer via targeting miR-105-5p/RAB22A axis. BMC Cancer 2021; 21:1069. [PMID: 34592939 PMCID: PMC8482615 DOI: 10.1186/s12885-021-08668-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents one of the major malignant cancers in the world. It has been demonstrated that long non-coding RNAs (lncRNAs) can cause great influences on various human cancers. Though MCF.2 cell line derived transforming sequence like antisense RNA 1 (MCF2L-AS1) and its carcinogenic effect in CRC has been elucidated by several previous researches, the underlying mechanism remains unknown. AIM We aimed at exploring the function and regulatory mechanism of MCF2L-AS1 in CRC. METHODS MCF2L-AS1 expression in CRC cells was tested via RT-qPCR assay. The effects of MCF2L-AS1 on the biological properties of CRC cells were testified through functional experiments. The molecular mechanism of MCF2L-AS1 was verified through mechanism experiments. RESULTS MCF2L-AS1 was highly expressed in CRC cells, and it could enhance the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) process of CRC cells. MiR-105-5p was sponged by MCF2L-AS1 in CRC cells and Ras-related protein Rab-22A (RAB22A) was verified to be the downstream target of miR-105-5p. It was verified through rescue assays that RAB22A overexpression or miR-105-5p silencing could reverse the repressive impact of MCF2L-AS1 silencing on CRC progression. CONCLUSION MCF2L-AS1 accelerated the malignant development of CRC cells by targeting the miR-105-5p/RAB22A axis.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hui Li
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Lesi Xie
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Guangxing Cui
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Weigang Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Wencong Ma
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China
| | - Yifeng Zhou
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huanshan Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
6
|
Zhou X, He Y, Li N, Bai G, Pan X, Zhang Z, Zhang H, Li J, Yuan X. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis 2021; 12:653. [PMID: 34175894 PMCID: PMC8236063 DOI: 10.1038/s41419-021-03941-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
In female mammals, the proliferation, apoptosis, and estradiol-17β (E2) secretion of granulosa cells (GCs) have come to decide the fate of follicles. DNA methylation and RSPO2 gene of Wnt signaling pathway have been reported to involve in the survival of GCs and follicular development. However, the molecular mechanisms for how DNA methylation regulates the expression of RSPO2 and participates in the follicular development are not clear. In this study, we found that the mRNA and protein levels of RSPO2 significantly increased during follicular development, but the DNA methylation level of RSPO2 promoter decreased gradually. Inhibition of DNA methylation or DNMT1 knockdown could decrease the methylation level of CpG island (CGI) in RSPO2 promoter and upregulate the expression level of RSPO2 in porcine GCs. The hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of transcription factor E2F1 and promoted the transcriptional activity of RSPO2. Moreover, RSPO2 promoted the proliferation of GCs with increasing the expression level of PCNA, CDK1, and CCND1 and promoted the E2 secretion of GCs with increasing the expression level of CYP19A1 and HSD17B1 and inhibited the apoptosis of GCs with decreasing the expression level of Caspase3, cleaved Caspase3, cleaved Caspase8, cleaved Caspase9, cleaved PARP, and BAX. In addition, RSPO2 knockdown promoted the apoptosis of GCs, blocked the development of follicles, and delayed the onset of puberty with decreasing the expression level of Wnt signaling pathway-related genes (LGR4 and CTNNB1) in vivo. Taken together, the hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of E2F1 and enhanced the transcription of RSPO2, which further promoted the proliferation and E2 secretion of GCs, inhibited the apoptosis of GCs, and ultimately ameliorated the development of follicles through Wnt signaling pathway. This study will provide useful information for further exploration on DNA-methylation-mediated RSPO2 pathway during follicular development.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guofeng Bai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| |
Collapse
|
7
|
Chen E, Zhou J, Xu E, Zhang C, Liu J, Zhou J, Li M, Wu J, Yang Q. A genome-wide screen for differentially methylated long noncoding RNAs identified that lncAC007255.8 is regulated by promoter DNA methylation in Beas-2B cells malignantly transformed by NNK. Toxicol Lett 2021; 346:34-46. [PMID: 33872747 DOI: 10.1016/j.toxlet.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023]
Abstract
Tobacco exposure is well known to induce genetic and epigenetic changes that contribute to the pathogenesis of lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a significant tobacco-specific carcinogen, but the oncogenic mechanisms of NNK have not been thoroughly elucidated. In this study we found that DNA methyltransferase 1 (DNMT1) was overexpressed in malignantly transformed human bronchial epithelial Beas-2B cells induced by NNK (2B-NNK cells), by treatment with NNK (400 μg/mL) for 7 days. An Arraystar Human noncoding RNA Promoter Microarray was used to detect the DNA methylation status of the promoter region of long noncoding RNAs (lncRNAs). The result showed that 1010 differentially methylated fragments were present in the lncRNA promoter region. QRT-PCR revealed that the expression of lncRNA AC007255.8 was remarkably downregulated in 2B-NNK cells and lung cancer tissues. Furthermore, Methylation-specific PCR showed that the methylation of the lncRNA AC007255.8 promoter was increased in 2B-NNK cells and lung cancer tissues. The reduced expression of lncRNA AC007255.8 was significantly associated with hypermethylation of lncRNA AC007255.8 promoter region. LncRNA AC007255.8 overexpression could result in decreased cell proliferation and increased cell apoptosis in 2B-NNK cells. In conclusion, NNK induced lncRNA AC007255.8 promoter hypermethylation via upregulation of DNMT1 in Beas-2B cells, leading to downregulation of lncRNA AC007255.8, and ultimately the enhancement of cell proliferation and the inhibition of apoptosis. This research affords novel insights into the epigenetic mechanisms of lung cancer, and will stimulate further research into the involvement of aberrant DNA methylation of non-coding regions of the genome in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Enzhao Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiaxin Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Cheng Zhang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiayu Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Mengcheng Li
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jianjun Wu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Qiaoyuan Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China; The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|