1
|
Wittayarat M, Kawanishi K, Ohata H, Nagahara M, Sambuu R, Sambuu O, Hirata M, Tanihara F, Taniguchi M, Otoi T, Sato Y. Aberrant Expression Levels of Androgen Receptor and SRD5A2 in Epididymal Epithelial Cells of Crossbred Infertile Cattle-Yak. Animals (Basel) 2025; 15:660. [PMID: 40075943 PMCID: PMC11898185 DOI: 10.3390/ani15050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Although yaks and cattle belong to the same Bovinae subfamily and have the same number of chromosomes, hybrid males are sterile because of the inactivation or abnormality of gene expression related to the production of healthy normal sperm. Recently, the analysis of gene expression not only in the testis but also in the epididymis has offered hints about the mechanism of infertility, because the epididymis supports the maturation of sperm in acquiring the capacity of fertilisation. Sperm maturation processes have been thought to be androgen-dependent, and the androgen receptor (AR) can be activated by dihydrotestosterone converted from plasma testosterone by the 5α-reductase isoform 2 (SRD5A2) in epididymal cells. In the present study, we investigated the immuno-expression levels of the AR and SRD5A2 in the epithelial cells of the hybrid cattle-yak epididymal caput in comparison with yak samples using image analysis. Epididymal tissues from yaks (1-3 years of age) and hybrid cattle-yaks (2 years of age) were used in this study. In yaks, AR signal intensity did not show any changes in epididymal epithelial cells during maturation. However, in 2-year-old hybrid cattle-yaks, AR signal intensity was significantly higher in the principal cells of the epididymis compared to that of yaks of the same age, indicating that hybrid sterility is not likely related to AR deficiency in the epididymal epithelium. On the other hand, SRD5A2 signal intensity was stable during maturation in the epithelial cells of the yak epididymis. However, the epididymal SRD5A2 signal intensity in the epithelial cells of the hybrid cattle-yak was lower than that of the yak. This suggests that a deficiency in SRD5A2 production in the epididymis may result in hybrid infertility, as it can subsequently cause incomplete AR signal transduction and altered spermatozoa physiology.
Collapse
Affiliation(s)
- Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Kimika Kawanishi
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi 751-8503, Japan
| | - Haruka Ohata
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi 751-8503, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan; (M.N.); (M.H.); (F.T.); (T.O.)
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar 17024, Mongolia
| | - Otgonjargal Sambuu
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia;
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan; (M.N.); (M.H.); (F.T.); (T.O.)
| | - Fuminori Tanihara
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan; (M.N.); (M.H.); (F.T.); (T.O.)
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-0841, Japan;
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima 779-3233, Japan; (M.N.); (M.H.); (F.T.); (T.O.)
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi 751-8503, Japan
| |
Collapse
|
2
|
Liu Y, Chen L, Jiang H, Wang H, Zhang Y, Yuan Z, Ma Y. N 6-Methyladenosine Modification-Related Genes Express Differentially in Sterile Male Cattle-Yaks. Life (Basel) 2024; 14:1155. [PMID: 39337938 PMCID: PMC11433611 DOI: 10.3390/life14091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
N6-methyladenosine (m6A), an RNA post-transcriptional modification, plays a crucial role in spermatogenesis. Cattle-yaks are interspecific hybrid offsprings of yak and cattle, and male cattle-yaks are sterile. This study aims to investigate the role of m6A modification in male cattle-yak infertility. Herein, testicular tissues were analyzed via histological observations, immunohistochemical assays, reverse-transcription quantitative polymerase chain reaction, Western blotting, and immunofluorescence assays. The results revealed that male cattle-yaks presented smaller testes (5.933 ± 0.4885 cm vs. 7.150 ± 0.3937 cm), with only single cell layers in seminiferous tubules, and weakened signals of m6A regulators such as METTL14 (methyltransferase-like 14), ALKBH5 (alpha-ketoglutarate-dependent hydroxylase homolog 5), FTO (fat mass and obesity-associated protein), and YTHDF2 (YTH N6-methyladenosine RNA binding protein F2), both at the RNA and protein levels, compared with those of yaks. Altogether, these findings suggest that m6A modification may play a crucial role in male cattle-yak sterility, providing a basis for future studies.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Chen
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| | - Hui Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Yujiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yi Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| |
Collapse
|
3
|
La Y, Ma X, Bao P, Chu M, Yan P, Guo X, Liang C. Quantitative Proteomic Analysis Reveals Key Proteins Involved in Testicular Development of Yaks. Int J Mol Sci 2024; 25:8433. [PMID: 39126002 PMCID: PMC11313431 DOI: 10.3390/ijms25158433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Male reproductive health is largely determined already in the early development of the testis. Although much work has been carried out to study the mechanisms of testicular development and spermatogenesis, there was previously no information on the differences in the protein composition of yak testicles during early development. In this study, the protein profiles in the testicles of 6- (M6), 18- (M18), and 30-month-old (M30) yaks were comparatively analyzed using TMT proteomics. A total of 5521 proteins were identified, with 13, 1295, and 1397 differentially expressed proteins (DEPs) in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that DEPs were mainly involved in signaling pathways related to testicular development and spermatogenesis, including the MAPK, PI3K-Akt, Wnt, mTOR, TGF-β, and AMPK signaling pathways. Furthermore, we also identified eight potential proteins (TEX101, PDCL2, SYCP2, SYCP3, COL1A1, COL1A2, ADAM10, and ATF1) that may be related to the testicular development and spermatogenesis of yaks. This study may provide new insights into the molecular mechanisms of the testicular development and spermatogenesis of yaks.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (Y.L.); (X.M.); (P.B.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
4
|
Yang Q, Xie Y, Pan B, Cheng Y, Zhu Y, Fei X, Li X, Yu J, Chen Z, Li J, Xiong X. The Expression and Epigenetic Characteristics of the HSF2 Gene in Cattle-Yak and the Correlation with Its Male Sterility. Animals (Basel) 2024; 14:1410. [PMID: 38791628 PMCID: PMC11117389 DOI: 10.3390/ani14101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Aberrant expression of the heat shock proteins and factors was revealed to be closely associated with male reproduction. Heat shock factor 2 (HSF2) is a transcription factor that is involved in the regulation of diverse developmental pathways. However, the role and the corresponding molecular mechanism of HSF2 in male cattle-yak sterility are still poorly understood. Therefore, the aim of this study was to obtain the sequence and the biological information of the cattle-yak HSF2 gene and to investigate the spatiotemporal expression profiles of the locus during the development of cattle-yak testes. Additionally, the differential expression was analyzed between the cattle-yak and the yak, and the methylation of corresponding promoter regions was compared. Our results showed an additional 54 bp fragment and a missense mutation (lysine to glutamic acid) were presented in the cattle-yak HSF2 gene, which correlated with enriched expression in testicular tissue. In addition, the expression of the HSF2 gene showed dynamic changes during the growth of the testes, reaching a peak in adulthood. The IHC indicated that HSF2 protein was primarily located in spermatocytes (PS), spermatogonia (SP), and Sertoli cells (SC) in cattle-yak testes, compared with the corresponding cells of cattle and the yak. Furthermore, bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the promoter region of the cattle-yak HSF2 were more numerous than in the yak counterpart, which suggests hypermethylation of this region in the cattle-yak. Taken together, the low expression abundance and hypermethylation of HSF2 may underpin the obstruction of spermatogenesis, which leads to male cattle-yak infertility. Our study provided a basic guideline for the HSF2 gene in male reproduction and a new insight into the mechanisms of male cattle-yak sterility.
Collapse
Affiliation(s)
- Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Xupeng Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Jun Yu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Zhuo Chen
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| |
Collapse
|
5
|
Wang X, Pei J, Xiong L, Kang Y, Guo S, Cao M, Ding Z, Bao P, Chu M, Liang C, Yan P, Guo X. Single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics offer new insights into the etiological basis for male cattle-yak sterility. Int J Biol Macromol 2023; 253:126831. [PMID: 37716658 DOI: 10.1016/j.ijbiomac.2023.126831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
The variety of species can be efficiently increased by interspecific hybridization. However, because the males in the hybrid progeny are usually sterile, this heterosis cannot be employed when other cattle and yaks are hybridized. While some system-level studies have sought to explore the etiological basis for male cattle-yak sterility, no systematic cellular analyses of this phenomenon have yet been performed. Here, single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics methods were used to study the differences in testicular tissue between 4-year-old male yak and 4-year-old male cattle-yak, providing new and comprehensive insights into the causes of male cattle-yak sterility. Cattle-yak testes samples detected 6 somatic cell types and one mixed germ cell type. Comparisons of these cell types revealed the more significant differences in Sertoli cells (SCs) and [Leydig cells and myoid cells (LCs_MCs)] between yak and cattle-yak samples compared to other somatic cell clusters. Even though the LCs and MCs from yaks and cattle-yaks were derived from the differentiation of the same progenitor cells, a high degree of overlap between LCs and MCs was observed in yak samples. Still, only a small overlap between LCs and MCs was observed in cattle-yak samples. Functional enrichment analyses revealed that genes down-regulated in cattle-yak SCs were primarily enriched in biological activity, whereas up-regulated genes in these cells were enriched for apoptotic activity. Furthermore, the genes of up-regulated in LCs_MCs of cattle-yak were significantly enriched in enzyme inhibitor and molecular function inhibitor activity. On the other hand, the genes of down-regulated in these cells were enriched for signal receptor binding, molecular function regulation, positive regulation of biological processes, and regulation of cell communication activity. The most significant annotated differences between yak and cattle-yak LCs_MCs were associated with cell-to-cell communication. While yak LCs_MCs regulated spermatogenic cells at spermatogonia, spermatocyte, and spermatid levels, no such relationships were found between cattle-yak LCs_MCs and germ cells. This may suggest that the somatic niche in male cattle-yak testes is a microenvironment that is ultimately not favorable for spermatogenesis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
6
|
Mipam T, Chen X, Zhao W, Zhang P, Chai Z, Yue B, Luo H, Wang J, Wang H, Wu Z, Wang J, Wang M, Wang H, Zhang M, Wang H, Jing K, Zhong J, Cai X. Single-cell transcriptome analysis and in vitro differentiation of testicular cells reveal novel insights into male sterility of the interspecific hybrid cattle-yak. BMC Genomics 2023; 24:149. [PMID: 36973659 PMCID: PMC10045231 DOI: 10.1186/s12864-023-09251-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.
Collapse
Affiliation(s)
- TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hongying Wang
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Cao M, Wang X, Guo S, Kang Y, Pei J, Guo X. F1 Male Sterility in Cattle-Yak Examined through Changes in Testis Tissue and Transcriptome Profiles. Animals (Basel) 2022; 12:ani12192711. [PMID: 36230452 PMCID: PMC9559613 DOI: 10.3390/ani12192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cattle-yak, a crossbreed of cattle and yak, has evident heterosis but F1 male cattle-yak is unable to generate sperm and is sterile, which limits the fixation of heterosis. This study analyzed the differences in testicular tissue development between four-year-old yak and cattle-yak from the perspective of histomorphological changes and sequenced the testicular tissue of the two using RNA-seq technology, examining the differential gene expression related to spermatogenesis and apoptosis. These findings offer a theoretical explanation for the sterility in F1 male cattle-yak that can help yak hybridization. Abstract Male-derived sterility in cattle-yaks, a hybrid deriving from yak and cattle, is a challenging problem. This study compared and analyzed the histomorphological differences in testis between sexually mature yak and cattle-yak, and examined the transcriptome differences employing RNA-seq. The study found that yak seminiferous tubules contained spermatogenic cells at all levels, while cattle-yak seminiferous tubules had reduced spermatogonia (SPG) and primary spermatocyte (Pri-SPC), fewer secondary spermatocytes (Sec-SPC), an absence of round spermatids (R-ST) and sperms (S), and possessed large vacuoles. All of these conditions could have significantly reduced the volume and weight of cattle-yak testis compared to that of yak. RNA-seq analysis identified 8473 differentially expressed genes (DEGs; 3580 upregulated and 4893 downregulated). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment evaluations for DEGs found their relation mostly to spermatogenesis and apoptosis. Among the DEGs, spermatogonia stem cell (SSCs) marker genes (Gfra1, CD9, SOHLH1, SALL4, ID4, and FOXO1) and genes involved in apoptosis (Fas, caspase3, caspase6, caspase7, caspase8, CTSK, CTSB and CTSC) were significantly upregulated, while differentiation spermatogenic cell marker genes (Ccna1, PIWIL1, TNP1, and TXNDC2) and meiosis-related genes (TEX14, TEX15, MEIOB, STAG3 and M1AP) were significantly downregulated in cattle-yak. Furthermore, the alternative splicing events in cattle-yak were substantially decreased than in yak, suggesting that the lack of protein subtypes could be another reason for spermatogenic arrest in cattle-yak testis.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-18993037854
| |
Collapse
|
8
|
Zhao S, Sun W, Chen SY, Li Y, Wang J, Lai S, Jia X. The exploration of miRNAs and mRNA profiles revealed the molecular mechanisms of cattle-yak male infertility. Front Vet Sci 2022; 9:974703. [PMID: 36277066 PMCID: PMC9581192 DOI: 10.3389/fvets.2022.974703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022] Open
Abstract
Cattle-yak, the first-generation offspring of cattle and yak, inherited many excellent characteristics from their parents. However, F1 male hybrid infertility restricts the utilization of heterosis greatly. In this study, we first compared the testicular tissue histological characteristics of three cattle, three yaks, and three cattle-yak. Then we explored the miRNA profiles and the target functions of nine samples with RNA-seq technology. We further analyzed the function of DE gene sets of mRNA profiles identified previously with GSEA. Testicular histology indicated that the seminiferous tubules became vacuolated and few active germ cells can be seen. RNA-seq results showed 47 up-regulated and 34 down-regulated, 16 up-regulated and 21 down-regulated miRNAs in cattle and yaks compared with cattle-yak, respectively. From the intersection of DE miRNAs, we identified that bta-miR-7 in cattle-yak is down-regulated. Target prediction indicated that the filtered genes especially MYRFL, FANCA, INSL3, USP9X, and SHF of bta-miR-7 may play crucial roles in the reproductive process. With further network analysis and GSEA, we screened such hub genes and function terms, we also found some DE gene sets that enriched in ATP binding, DNA binding, and reproduction processes. We concluded that bta-miR-7 may play an important role in influencing fecundity. Our study provides new insights for explaining the molecular mechanism of cattle-yak infertility.
Collapse
|
9
|
Shimazaki M, Wittayarat M, Sambuu R, Sugita A, Kawaguchi M, Hirata M, Tanihara F, Takagi M, Taniguchi M, Otoi T, Sato Y. Disruption of cell proliferation and apoptosis balance in the testes of crossbred cattle-yaks affects spermatogenic cell fate and sterility. Reprod Domest Anim 2022; 57:999-1006. [PMID: 35614560 DOI: 10.1111/rda.14166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The balance between proliferation, differentiation, and apoptosis is well-coordinated in spermatogenesis for the timely production of appropriate numbers of sperm in animals. Disruption or decrease in sperm production is due to many conditions, including changes in testicular cell fate balance. Interspecies hybridisation of domestic yaks and cattle results in sterility in males because of spermatogenic arrest; however, the underlying mechanisms involved in sterility are still unclear. In the present study, we investigated the proliferation and apoptosis status during the development of yaks and crossbred cattle-yaks using immunohistochemistry of proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays. Testicular tissues from yaks (immature: 1 year old, mature: 2-3 years old) and backcrossed hybrids (2 year old) were collected and used to investigate the expression of each parameter in testicular cells. During the maturation of yak testes, proliferation and apoptosis became active only in spermatogenic cells, and not in other somatic cells, such as Sertoli cells, myoid cells, and Leydig cells. Furthermore, hybrid cattle-yak testes maintained proliferation ability but less apoptotic ability in spermatogenic cells when compared to yaks of the same age, suggesting that normal spermatogenic cell fate control is disrupted by changes in the balance between proliferation and apoptosis. In addition, Leydig cell proliferation rate was higher than apoptosis rate in the cattle-yak testes, indicating an increased number of Leydig cells, which may affect spermatogenesis through changes in steroidogenesis. Although epigenetic changes may be involved in cattle-yak testes, further studies are needed to clarify the modulation of proliferation and apoptosis to elucidate the mechanisms of infertility in hybrid cattle-yak males.
Collapse
Affiliation(s)
- Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Asami Sugita
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - Masaki Kawaguchi
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Mitsuhiro Takagi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| |
Collapse
|
10
|
Phakdeedindan P, Wittayarat M, Tharasanit T, Techakumphu M, Shimazaki M, Sambuu R, Hirata M, Tanihara F, Taniguchi M, Otoi T, Sato Y. Aberrant levels of DNA methylation and H3K9 acetylation in the testicular cells of crossbred cattle-yak showing infertility. Reprod Domest Anim 2021; 57:304-313. [PMID: 34854139 DOI: 10.1111/rda.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| |
Collapse
|
11
|
Yin S, Qin W, Wang B, Zhou J, Yang L, Xiong X, Li J. Absence of Sirtuin 1 impairs the testicular development in cattleyak by inactivating SF-1. Reprod Domest Anim 2020; 55:1054-1060. [PMID: 32497285 DOI: 10.1111/rda.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
Cattleyak, which are interspecific hybrids between cattle and yak, display much higher growth performances than yak. However, F1 male cattleyak are infertile due to defective testicular development. Sirtuin 1 (SIRT1) is a histone deacetylase that is essential for various biological processes, while the roles of testicular SIRT1 in yak and cattleyak are still poorly understood. Here, we found that SIRT1 was localized in various kinds of yak testicular cells except elongated spermatids while it was deficient in cattleyak testis. Further studies indicated that cattleyak testis exhibited decreased histone acetylation levels on H3 and H4. One of SIRT1 co-factors, steroidogenic factor-1 (SF-1), was lost in cattleyak testis at protein level. Expressions of several SF-1 target genes responsible for Sertoli cell development and steroidogenesis, including STAR, CYP11A1, CYP26B1, FDX1 and HSD3B, decreased significantly in cattleyak testis. In addition, SIRT1-mediated P53 acetylation was not responsible for the cell apoptosis in cattleyak testis. Taken together, our results suggested the deficiency of SIRT1 in yak testis caused inactivation of SF-1 and the impairment of testicular development. This research provides theoretical bases for understanding the mechanism of cattleyak sterility and gives new insights in revealing the roles of SIRT1 in regulating yak testicular development.
Collapse
Affiliation(s)
- Shi Yin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China.,Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, China
| | - Wenchang Qin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Bin Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jingwen Zhou
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Liuqing Yang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jian Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|