1
|
Huttunen KL, Karttunen K, Tolkkinen M, Valkama P, Västilä K, Aroviita J. Two-stage channels can enhance local biodiversity in agricultural landscapes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120620. [PMID: 38522279 DOI: 10.1016/j.jenvman.2024.120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
Field drainage causes habitat loss, alters natural flow regimes, and impairs water quality. Still, drainage ditches often are last remnants of aquatic and wetland habitats in agricultural landscapes and as such, can be important for local biodiversity. Two-stage channels are considered as a greener choice for conventional ditches, as they are constructed to mimic the structure of natural lowland streams providing a channel for drainage water and mechanisms to decrease diffuse loading. Two-stage channels could also benefit local biodiversity and ecosystem functions, but existing information on their ecological benefits is scarce and incomplete. We collected environmental and biological data from six agricultural stream systems in Finland each with consequent sections of a conventional ditch and a two-stage channel to study the potential of two-stage channels to enhance aquatic and riparian biodiversity and ecological functions. Biological data included samples of stream invertebrates, diatoms and plants and riparian beetles and plants. Overall, both section types were highly dominated by few core taxa for most of the studied organism groups. Riparian plant and invertebrate communities seemed to benefit from the two-stage channel structure with adjacent floodplains and drier ditch banks. In addition, two-stage channel sections had higher aquatic plant diversity, algal productivity, and decomposition rate, but lower stream invertebrate and diatom diversity. Two-stage channel construction did not diversify the structure of stream channels which is likely one explanation for the lack of positive effects on benthic diversity. However, both section types harbored unique taxa found only in one of the two types in all studied organism groups resulting in higher local gamma diversity. Thus, two-stage channels enhanced local biodiversity in agricultural landscapes. Improvements especially in aquatic biodiversity might be achieved by increasing the heterogeneity of in-stream habitat structure and with further efforts to decrease nutrient and sediment loads.
Collapse
Affiliation(s)
- Kaisa-Leena Huttunen
- Finnish Environment Institute, Nature Solutions, PO Box 413, 90014, Oulu, Finland.
| | - Krister Karttunen
- Finnish Environment Institute, Nature Solutions, Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Mikko Tolkkinen
- Metsähallitus, Parks & Wildlife Finland, PO Box 81, 90130, Oulu, Finland.
| | - Pasi Valkama
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Kaisa Västilä
- Finnish Environment Institute, Marine and Freshwater Solutions, Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Jukka Aroviita
- Finnish Environment Institute, Marine and Freshwater Solutions, PO Box 413, 90014, Oulu, Finland.
| |
Collapse
|
2
|
Stowe ES, Petersen KN, Rao S, Walther EJ, Freeman MC, Wenger SJ. Stream restoration produces transitory, not permanent, changes to fish assemblages at compensatory mitigation sites. Restor Ecol 2023. [DOI: 10.1111/rec.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Edward S. Stowe
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| | | | - Shishir Rao
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| | - Eric J. Walther
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| | - Mary C. Freeman
- Eastern Ecological Science Center U.S. Geological Survey Athens GA U.S.A
| | - Seth J. Wenger
- Odum School of Ecology and River Basin Center University of Georgia Athens GA U.S.A
| |
Collapse
|
3
|
Spears BM, Chapman DS, Carvalho L, Feld CK, Gessner MO, Piggott JJ, Banin LF, Gutiérrez-Cánovas C, Solheim AL, Richardson JA, Schinegger R, Segurado P, Thackeray SJ, Birk S. Making waves. Bridging theory and practice towards multiple stressor management in freshwater ecosystems. WATER RESEARCH 2021; 196:116981. [PMID: 33770676 DOI: 10.1016/j.watres.2021.116981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Despite advances in conceptual understanding, single-stressor abatement approaches remain common in the management of fresh waters, even though they can produce unexpected ecological responses when multiple stressors interact. Here we identify limitations restricting the development of multiple-stressor management strategies and address these, bridging theory and practice, within a novel empirical framework. Those critical limitations include that (i) monitoring schemes fall short of accounting for theory on relationships between multiple-stressor interactions and ecological responses, (ii) current empirical modelling approaches neglect the prevalence and intensity of multiple-stressor interactions, and (iii) mechanisms of stressor interactions are often poorly understood. We offer practical recommendations for the use of empirical models and experiments to predict the effects of freshwater degradation in response to changes in multiple stressors, demonstrating this approach in a case study. Drawing on our framework, we offer practical recommendations to support the development of effective management strategies in three general multiple-stressor scenarios.
Collapse
Affiliation(s)
- Bryan M Spears
- UK Centre for Ecology & Hydrology, Edinburgh EH26 0QB, UK.
| | - Daniel S Chapman
- UK Centre for Ecology & Hydrology, Edinburgh EH26 0QB, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | | - Christian K Feld
- University of Duisburg-Essen, Aquatic Ecology and Centre for Water and Environmental Research, 45117 Essen, Germany
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775 Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | | | - Cayetano Gutiérrez-Cánovas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Anne Lyche Solheim
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jessica A Richardson
- UK Centre for Ecology & Hydrology, Edinburgh EH26 0QB, UK; UK Centre for Ecology & Hydrology, Lancaster LA1 4AP, UK
| | - Rafaela Schinegger
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria
| | - Pedro Segurado
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon. Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | | | - Sebastian Birk
- University of Duisburg-Essen, Aquatic Ecology and Centre for Water and Environmental Research, 45117 Essen, Germany
| |
Collapse
|
4
|
Disentangling the Main Components of Hydromorphological Modifications at Reach Scale in Rivers of Greece. HYDROLOGY 2020. [DOI: 10.3390/hydrology7020022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Water Framework Directive (WFD) requires from member states to monitor hydromorphological features of rivers in order to assess their ecological quality. Thus, numerous hydromorphological assessment methods have been developed with most of them focusing on the dynamics of hydrology, geomorphology and riparian zone extent. Within the scope of this study, we assessed the hydromorphological features of 106 river reaches distributed among thirteen WFD River Basin Districts (RBDs) to identify the main drivers of hydromorphological perturbation at a national scale. The studied reaches reflect a wide range of natural variability as they include various types of watercourses extending from lowlands to mid-altitude and mountainous systems. We employed the River Habitat Survey (RHS), and we recorded hydromorphological features and modifications in both banks and the channel bed along 500 m for each reach. Then, the Habitat Modification Score (HMS) and the individual sub-scores that indicate the extent of specific modifications (e.g., bridges, fords, weirs, bank reprofiling, bank reinforcement, etc.) were calculated in order to a) assess the severity of the total artificial modification and b) to highlight the most common and severe causes of overall alteration. The results showed that alterations such as reprofiling and reinforcement of banks contributed the most to the total HMS followed by the presence of fords and bridges. Particularly, the bank alterations indicate a serious deterioration of the longitudinal profile of the reaches, while the occurrence of many fords and bridges is the main cause for perturbations that affect locally the stream cross-sectional profile. Overall, these results compile a first nationwide assessment of the hydromorphological status of Greek rivers in line with the WFD and set the basis for further research that will focus on the diversity of stream habitat features as a measure for the overall ecological quality.
Collapse
|