1
|
Duan L, Wang X, Jin Y. Study on interspecific relationships, community stability, and environmental factors of lithophytic moss at different elevations in karst cities. Ecol Evol 2024; 14:e70120. [PMID: 39114179 PMCID: PMC11303666 DOI: 10.1002/ece3.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Ecosystem stability arises from the interplay of species diversity, environmental conditions, and external disturbances. Understanding the structure of plant communities, interspecific relationships, and community stability in urban ecosystems is fundamental to ecological restoration and community development. This study utilized the karst city of Guiyang as a case study and employed the α diversity index, variance ratio method (VR), χ 2-test, Pearson correlation test, Spearman rank correlation test, M. Godron stability, and canonical correspondence analysis (CCA). The research focused on analyzing the species diversity, interspecific associations, community stability, and environmental factors of lithophytic moss at various elevations (989-1398 m). The findings revealed the presence of 58 species belonging to 27 genera and 13 families of lithophytic moss in the study area. Notably, the Brachytheciaceae and Pottiaceae emerged as dominant, exhibiting a broad ecological range and adaptation mechanisms, thereby playing a crucial role in the ecological environment of rocky desertification. The study observed that the highest species richness and dominance values of lithophytic moss were recorded at the N4 (1296-1398 m) elevation gradient, while the highest species diversity and uniformity values were observed at the N3 (1194-1295 m) elevation gradient, indicating a significant impact of altitude on lithobryophyte species diversity, particularly at middle and high altitudes. The analysis of interspecific associations and stability indicated a predominantly negative overall association within the lithophytic moss community, suggesting an early stage of succession, with weak interspecific associations and correlations among dominant pairs, tending towards relative independence. Only the communities at N2 (1092-1193 m) elevation exhibited stability, while the other communities were in an unstable stage, showing no significant correlation with species diversity. Furthermore, light intensity (182-129300 lux) exerted the greatest influence on community stability. Additionally, air humidity (36.5-52.3%) and altitude (998-1327 m) emerged as the primary environmental factors influencing community distribution, with a close and positive correlation between the two. These results hold significant reference value for promoting the succession and steady development of vegetation in rocky desertification areas and enhancing the conservation and restoration of vegetation community diversity in karst urban ecosystems.
Collapse
Affiliation(s)
- Lixin Duan
- College of ForestryGuizhou UniversityGuiyangGuizhouChina
| | - Xiurong Wang
- College of ForestryGuizhou UniversityGuiyangGuizhouChina
| | - Yalin Jin
- College of ForestryGuizhou UniversityGuiyangGuizhouChina
| |
Collapse
|
2
|
Monteiro J, Domingues I, Brilhante M, Serafim J, Nunes S, Trigo R, Branquinho C. Changes in bryophyte functional composition during post-fire succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171592. [PMID: 38479526 DOI: 10.1016/j.scitotenv.2024.171592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Climate and land-use changes are altering fire regimes in many regions around the world. To date, most studies have focused on the effects of altered fire regimes on woody and herbaceous communities, while the mechanisms driving post-fire bryophyte succession remain poorly understood, particularly in Mediterranean-type ecosystems. Here, we examined changes in bryophyte functional composition along a post-fire chronosequence (ranging from 1 to 20+ years) in Pyrenean oak woodlands (northeastern Portugal). To do so, we defined bryophyte functional groups based on seven morphological, reproductive, and life history traits. Then, we fitted linear and structural equation models to disentangle the direct and indirect effects of fire (time since fire and fire intensity), vegetation structure, climate, topography, and edaphic conditions on the abundance of each group. We identified two main functional groups: early colonizers (species with traits associated with strong colonization ability and desiccation tolerance) and perennial stayers (species with high competitive ability, i.e., large perennial mosses). Overall, the abundance of early colonizer species decreased with time since fire and increased with fire intensity, while the opposite was observed for perennial stayers. Thus, successional dynamics reflected a trade-off between species' competitive and colonization abilities, highlighting the role of biotic interactions later in succession. Patterns of functional composition were also consistent with changes in environmental conditions during succession, suggesting that species may experience stressful conditions (i.e., high radiation and low water availability) in early stages of post-fire succession. Our results also indicate that increased fire intensity may alter successional trajectories, leading to long-term changes in bryophyte communities. By understanding the response of bryophyte communities to fire, we were able to identify species with potential use as soil restoration materials.
Collapse
Affiliation(s)
- Juliana Monteiro
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Inês Domingues
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Miguel Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal.
| | - João Serafim
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sílvia Nunes
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Ricardo Trigo
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-919, Brazil.
| | - Cristina Branquinho
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
3
|
Antoninka A, Faist A, Rodriguez‐Caballero E, Young KE, Chaudhary VB, Condon LA, Pyke DA. Biological soil crusts in ecological restoration: emerging research and perspectives. Restor Ecol 2020. [DOI: 10.1111/rec.13201] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anita Antoninka
- School of Forestry Northern Arizona University 200 E Pine Knoll Drive, Flagstaff AZ 86011 U.S.A
| | - Akasha Faist
- Department of Animal and Range Sciences New Mexico State University Box 30003 MSC 3‐I, Las Cruces NM 88003 U.S.A
| | - Emilio Rodriguez‐Caballero
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL) University of Almería 04120 Almería Spain
| | - Kristina E. Young
- Department of Biological Sciences University of Texas at El Paso 500 West University Avenue, El Paso TX 79968 U.S.A
| | - V. Bala Chaudhary
- Department of Environmental Science and Studies DePaul University 1110 West Belden Avenue, Chicago IL 60614 U.S.A
| | - Lea A. Condon
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR 97331 U.S.A
| | - David A. Pyke
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR 97331 U.S.A
| |
Collapse
|