1
|
Yang L, Zhou X, Liu J, Yang G, Tan W, Ding H, Fang X, Yu J, Li W, He J, Cao H, Ma Q, Yu L, Lu Z. PEBL, a component-based Chinese medicine, reduces virus-induced acute lung injury by targeting FXR to decrease ACE2 levels. J Adv Res 2025:S2090-1232(25)00295-4. [PMID: 40324631 DOI: 10.1016/j.jare.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/16/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Despite the growing clinical need, the therapeutic efficacy of drugs for acute lung injury (ALI) remains inadequate. Traditional Chinese Medicine (TCM) holds potential in managing ALI due to its unique therapeutic properties. However, the intricate nature of TCM formulations hinders global adoption. Component-based Chinese medicine (CCM) offers a promising pathway for TCM's internationalization. Phillyrin-Emodin-Baicalin-Liquiritin (PEBL), a CCM with significant anti-inflammatory activity, is derived from the well-established TCM formula Liang-Ge-San. Whether PEBL effectively addresses viral ALI, however, remains unclear. OBJECTIVES This study aims to investigate the therapeutic effects and underlying mechanisms of PEBL on viral ALI. METHODS The efficacy of PEBL against Poly(I:C)-induced ALI was assessed by analyzing cytokine production, macrophage infiltration, pulmonary damage, and mortality. Bioinformatics and network pharmacology were employed to identify key targets and signaling pathways. The molecular mechanisms were further validated using Poly(I:C)-treated RAW264.7 cells, Tg(coro1α: GFP) zebrafish, BALB/c mice, and models of Influenza A/Puerto Rico/8/1934 (H1N1) virus strain (PR8)-induced ALI in BALB/c mice and SARS-CoV-2 Omicron XBB.1.16 subvariant (XBB)-induced ALI in hACE2-transgenic C57BL/6 mice. RESULTS PEBL mitigated Poly(I:C)-induced ALI, as evidenced by reduced cytokine levels, diminished macrophage infiltration, alleviated lung damage, and decreased mortality. Virtual screening identified the farnesyl X receptor (FXR) and angiotensin-converting enzyme 2 (ACE2) as key therapeutic targets for viral pneumonia. Mechanistically, PEBL downregulated FXR expression, inhibiting FXR binding to ACE2 promoters, which subsequently suppressed NF-κB-p65 nuclear translocation and cytokine production. In vivo, PEBL attenuated cytokine production by inhibiting ACE2 transcription through FXR downregulation, leading to alleviation of Poly(I:C)-induced ALI in both zebrafish and mice. Additionally, PEBL significantly improved symptoms of ALI caused by PR8 and XBB infections, by disrupting the FXR/ACE2 signaling axis, resulting in reduced weight loss, lower lung indices, diminished viral load and titer, fewer pulmonary lesions, and suppressed NF-κB-p65 nuclear translocation, along with decreased cytokine storm. CONCLUSIONS This study provides the first evidence that PEBL offers protective effects against ALI induced by acute respiratory viruses. PEBL prevents FXR from binding to ACE2 by inhibiting FXR transcription, which reduces macrophage infiltration, cytokine storm formation, and inflammatory injury, thereby ameliorating viral ALI. These findings underscore the potential of PEBL as a candidate for further exploration in the treatment of viral ALI.
Collapse
Affiliation(s)
- Liling Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Xiangjun Zhou
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; International Joint Laboratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou 510030, China
| | - Guangli Yang
- Department of Central Laboratory, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Weifu Tan
- Dongguan Municipal Key Laboratory for Precise Prevention and Treatment of Neonatal Severe Illnesses, Department of Neonatology, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Hongyan Ding
- Omega-3 Research and Conversion Center, Dongguan Innovation Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Xiaochuan Fang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Li
- Dongguan Municipal Key Laboratory for Precise Prevention and Treatment of Neonatal Severe Illnesses, Department of Neonatology, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Jiayang He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Malla S, Sajeevan KA, Acharya B, Chowdhury R, Saha R. Dissecting metabolic landscape of alveolar macrophage. Sci Rep 2024; 14:30383. [PMID: 39638830 PMCID: PMC11621776 DOI: 10.1038/s41598-024-81253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The highly plastic nature of Alveolar Macrophage (AM) plays a crucial role in the defense against inhaled particulates and pathogens in the lungs. Depending on the signal, AM acquires either the classically activated M1 phenotype or the alternatively activated M2 phenotype. In this study, we investigate the metabolic shift in the activated phases of AM (M1 and M2 phases) by reconstructing context specific Genome-Scale Metabolic (GSM) models. Metabolic pathways such as pyruvate metabolism, arachidonic acid metabolism, chondroitin/heparan sulfate biosynthesis, and heparan sulfate degradation are found to be important driving forces in the development of the M1/M2 phenotypes. Additionally, we formulated a bilevel optimization framework named MetaShiftOptimizer to identify minimal modifications that shift one activated state (M1/M2) to the other. The identified reactions involve metabolites such as glycogenin, L-carnitine, 5-hydroperoxy eicosatetraenoic acid, and leukotriene B4, which show potential to be further investigated as significant factors for developing efficient therapy targets for severe respiratory disorders in the future. Overall, our study contributes to the understanding of the metabolic capabilities of the M1 and M2 phenotype of AM and identifies pathways and reactions that can be potential targets for polarization shift and also be used as therapeutic strategies against respiratory diseases.
Collapse
Affiliation(s)
- Sunayana Malla
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Bibek Acharya
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Li X, Shang S, Wu M, Song Q, Chen D. Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett 2024; 598:217096. [PMID: 38969161 DOI: 10.1016/j.canlet.2024.217096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Metabolic derivatives of numerous microorganisms inhabiting the human gut can participate in regulating physiological activities and immune status of the lungs through the gut-lung axis. The current well-established microbial metabolites include short-chain fatty acids (SCFAs), tryptophan and its derivatives, polyamines (PAs), secondary bile acids (SBAs), etc. As the study continues to deepen, the critical function of microbial metabolites in the occurrence and treatment of lung cancer has gradually been revealed. Microbial derivates can enter the circulation system to modulate the immune microenvironment of lung cancer. Mechanistically, oncometabolites damage host DNA and promote the occurrence of lung cancer, while tumor-suppresive metabolites directly affect the immune system to combat the malignant properties of cancer cells and even show considerable application potential in improving the efficacy of lung cancer immunotherapy. Considering the crosstalk along the gut-lung axis, in-depth exploration of microbial metabolites in patients' feces or serum will provide novel guidance for lung cancer diagnosis and treatment selection strategies. In addition, targeted therapeutics on microbial metabolites are expected to overcome the bottleneck of lung cancer immunotherapy and alleviate adverse reactions, including fecal microbiota transplantation, microecological preparations, metabolite synthesis and drugs targeting metabolic pathways. In summary, this review provides novel insights and explanations on the intricate interplay between gut microbial metabolites and lung cancer development, and immunotherapy through the lens of the gut-lung axis, which further confirms the possible translational potential of the microbiome metabolome in lung cancer treatment.
Collapse
Affiliation(s)
- Xinpei Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijie Shang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Song
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Shi X, Chen Y, Shi M, Gao F, Huang L, Wang W, Wei D, Shi C, Yu Y, Xia X, Song N, Chen X, Distler JHW, Lu C, Chen J, Wang J. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis 2024; 23:98. [PMID: 38570797 PMCID: PMC10988923 DOI: 10.1186/s12944-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Chen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Gao
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lihao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyi Shi
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuexin Yu
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Xueyi Xia
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Fudan Zhangjiang Institute, Shanghai, People's Republic of China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - Chenqi Lu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China.
- Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Xie W, Deng L, Qian R, Huang X, Liu W, Tang S. Curculigoside Attenuates Endoplasmic Reticulum Stress-Induced Epithelial Cell and Fibroblast Senescence by Regulating the SIRT1-P300 Signaling Pathway. Antioxidants (Basel) 2024; 13:420. [PMID: 38671868 PMCID: PMC11047561 DOI: 10.3390/antiox13040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The senescence of alveolar epithelial cells (AECs) and fibroblasts plays a pivotal role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a condition lacking specific therapeutic interventions. Curculigoside (CCG), a prominent bioactive constituent of Curculigo, exhibits anti-osteoporotic and antioxidant activities. Our investigation aimed to elucidate the anti-senescence and anti-fibrotic effects of CCG in experimental pulmonary fibrosis and delineate its underlying molecular mechanisms. Our findings demonstrate that CCG attenuates bleomycin-induced pulmonary fibrosis and lung senescence in murine models, concomitantly ameliorating lung function impairment. Immunofluorescence staining for senescence marker p21, alongside SPC or α-SMA, suggested that CCG's mitigation of lung senescence correlates closely with the deceleration of senescence in AECs and fibroblasts. In vitro, CCG mitigated H2O2-induced senescence in AECs and the natural senescence of primary mouse fibroblasts. Mechanistically, CCG can upregulate SIRT1 expression, downregulating P300 expression, enhancing Trim72 expression to facilitate P300 ubiquitination and degradation, reducing the acetylation levels of antioxidant enzymes, and upregulating their expression levels. These actions collectively inhibited endoplasmic reticulum stress (ERS) and alleviated senescence. Furthermore, the anti-senescence effects and mechanisms of CCG were validated in a D-galactose (D-gal)-induced progeroid model. This study provides novel insights into the mechanisms underlying the action of CCG in cellular senescence and chronic diseases, offering potential avenues for the development of innovative drugs or therapeutic strategies.
Collapse
Affiliation(s)
- Weixi Xie
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Rui Qian
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (R.Q.); (X.H.)
- The School of Nursing, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
7
|
Rowe JC, Winston JA. Collaborative Metabolism: Gut Microbes Play a Key Role in Canine and Feline Bile Acid Metabolism. Vet Sci 2024; 11:94. [PMID: 38393112 PMCID: PMC10892723 DOI: 10.3390/vetsci11020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Bile acids, produced by the liver and secreted into the gastrointestinal tract, are dynamic molecules capable of impacting the overall health of dogs and cats in many contexts. Importantly, the gut microbiota metabolizes host primary bile acids into chemically distinct secondary bile acids. This review explores the emergence of new literature connecting microbial-derived bile acid metabolism to canine and feline health and disease. Moreover, this review highlights multi-omic methodologies for translational research as an area for continued growth in veterinary medicine aimed at accelerating microbiome science and medicine as it pertains to bile acid metabolism in dogs and cats.
Collapse
Affiliation(s)
- John C. Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Meshanni JA, Lee JM, Vayas KN, Sun R, Jiang C, Guo GL, Gow AJ, Laskin JD, Laskin DL. Suppression of Lung Oxidative Stress, Inflammation, and Fibrosis following Nitrogen Mustard Exposure by the Selective Farnesoid X Receptor Agonist Obeticholic Acid. J Pharmacol Exp Ther 2024; 388:586-595. [PMID: 37188530 PMCID: PMC10801770 DOI: 10.1124/jpet.123.001557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Jordan M Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Rachel Sun
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Chenghui Jiang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| |
Collapse
|
10
|
Newton CA, Noth I, Raghu G. Gastro-oesophageal reflux and idiopathic pulmonary fibrosis: sorting the chicken and the egg by genetic link. Eur Respir J 2023; 62:2301878. [PMID: 38128953 PMCID: PMC10990001 DOI: 10.1183/13993003.01878-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Chad A Newton
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Diseases, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
11
|
Zhou J, Pi N, Guo Y, He X, Wang J, Luo R, Wang M, Yu H. The mechanism of action of Ophiocordyceps sinensis mycelia for prevention of acute lung injury based on non-targeted serum metabolomics. PLoS One 2023; 18:e0287331. [PMID: 37327224 PMCID: PMC10275419 DOI: 10.1371/journal.pone.0287331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
Ophiocordyceps sinensis is a fungus with medicinal value in treating lung diseases, but no study has reported how to prevent acute lung injury using this fungus. The mice were divided into normal, model, positive control, and O. sinensis groups to observe lung histopathological sections and transmission electron microscopy, along with liquid chromatography-mass spectrometry and hematoxylin and eosin (H&E) staining to closely identify structural differences resulting from destruction between the groups. The results of the H&E staining showed that, compared with the normal group, the model group showed alveolar collapse. Compared with the model group, the infiltration of inflammatory cells in the alveolar cavity of the O. sinensis group was significantly reduced. Mitochondrial plate-like cristae were observed in type II alveolar cells of the normal group, with normal coloration of the mitochondrial matrix. Type II alveolar cells in the model group showed obvious edema. The statuses of type II alveolar cells in the O. sinensis and positive groups were similar to that in the normal group. Twenty-nine biomarkers and 10 related metabolic pathways were identified by serum metabolomics screening. The results showed that O. sinensis mycelia had a significant effect on the prevention of lipopolysaccharide-induced inflammation.
Collapse
Affiliation(s)
- Jinna Zhou
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
- School of Ecology and Environment, Tibet University, Lhasa City, China
| | - Na Pi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xinyi He
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Jinhu Wang
- School of Ecology and Environment, Tibet University, Lhasa City, China
| | - Run Luo
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Mu Wang
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Hong Yu
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Chen D, Zhang H, Zhao L, Liu X, Xue S, Wu P, Jiang H. Prognostic value of RILPL2 and its correlation with tumor immune microenvironment and glycolysis in non-small cell lung cancer. Cell Cycle 2023; 22:841-857. [PMID: 36536539 PMCID: PMC10026870 DOI: 10.1080/15384101.2022.2159203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rab-interacting lysosomal protein - like 2 (RILPL2) has been reported to be associated with prognosis and tumor biological functions in breast cancer and endometrial carcinoma. However, its expression and functional role in non-small cell lung cancer (NSCLC) remain unclear. The expression and clinical data of lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) were downloaded from the TCGA database. The expression of RILPL2 in NSCLC cell lines was verified by the Western blot. We used online databases and bioinformatics analysis tools to explore its prognostic value, potential biological functions, and correlations with tumor immune microenvironment.The expression of RILPL2 was significantly lower in NSCLC compared with adjacent normal tissues. Low RILPL2 expression was associated with worse overall survival (OS) in NSCLC. The GO analysis showed RILPL2 was comprehensively involved in immune activity. RILPL2 expression was significantly positively correlated with the infiltration levels of B cells, CD8+T cells, CD4+T cells, macrophages, neutrophils, dendritic cells (P < 0.001), and it was also significantly positively correlated with programmed cell death ligand 1 (PD-L1/CD274) (P < 0.001). High RILPL2 expression could predict better immunotherapy response and prognosis in the immunotherapy cohort. The GSEA analysis showed low RILPL2 expression was associated with glycolysis process in LUAD, which was verified in vitro.These results showed RILPL2 expression was correlated with prognosis, tumor microenvironment, and immunotherapy response in NSCLC. Besides, RILPL2 may regulate glycolysis in LUAD.
Collapse
Affiliation(s)
- Dongfang Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Hongyan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Lifang Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xueqing Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Shan Xue
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Peiling Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Handong Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
13
|
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, Scott WE, Pereyra-Gerber P, Gelson WTH, Brown S, Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M, Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC, Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H, Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell C, Valentijn A, Illingworth CJR, Dahman B, Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS, Gupta RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee JH, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE, Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615:134-142. [PMID: 36470304 PMCID: PMC9977684 DOI: 10.1038/s41586-022-05594-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gwilym J Webb
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Binu V John
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gustav Buescher
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lu Wang
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Chelsea Griffiths
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marnie L Brown
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William E Scott
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - William T H Gelson
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jo Sharp
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Megan Neary
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Box
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lee Tatham
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henry Pertinez
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sally Forrest
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | | | - Mahnaz Darvish-Damavandi
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Victoria L Mulcahy
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James A Heslop
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | | | - Thomas W M Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johannes Bargehr
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sara S Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Jo Herriott
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edyta Kijak
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Cox
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Valentijn
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J R Illingworth
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Bassam Dahman
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dustin R Bastaich
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Raphaella D Ferreira
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Gareth Corbett
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Simon J A Buczacki
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
- NHS Blood and Transplant, Cambridge, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew J Fisher
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christopher J E Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - George F Mells
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Segú-Vergés C, Artigas L, Coma M, Peck RW. Artificial intelligence assessment of the potential of tocilizumab along with corticosteroids therapy for the management of COVID-19 evoked acute respiratory distress syndrome. PLoS One 2023; 18:e0280677. [PMID: 36791125 PMCID: PMC9931125 DOI: 10.1371/journal.pone.0280677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/05/2023] [Indexed: 02/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), associated with high mortality rate, affects up to 67% of hospitalized COVID-19 patients. Early evidence indicated that the pathogenesis of COVID-19 evoked ARDS is, at least partially, mediated by hyperinflammatory cytokine storm in which interleukin 6 (IL-6) plays an essential role. The corticosteroid dexamethasone is an effective treatment for severe COVID-19 related ARDS. However, trials of other immunomodulatory therapies, including anti-IL6 agents such as tocilizumab and sarilumab, have shown limited evidence of benefit as monotherapy. But recently published large trials have reported added benefit of tocilizumab in combination with dexamethasone in severe COVID-19 related ARDS. In silico tools can be useful to shed light on the mechanisms evoked by SARS-CoV-2 infection and of the potential therapeutic approaches. Therapeutic performance mapping system (TPMS), based on systems biology and artificial intelligence, integrate available biological, pharmacological and medical knowledge to create mathematical models of the disease. This technology was used to identify the pharmacological mechanism of dexamethasone, with or without tocilizumab, in the management of COVID-19 evoked ARDS. The results showed that while dexamethasone would be addressing a wider range of pathological processes with low intensity, tocilizumab might provide a more direct and intense effect upon the cytokine storm. Based on this in silico study, we conclude that the use of tocilizumab alongside dexamethasone is predicted to induce a synergistic effect in dampening inflammation and subsequent pathological processes, supporting the beneficial effect of the combined therapy in critically ill patients. Future research will allow identifying the ideal subpopulation of patients that would benefit better from this combined treatment.
Collapse
Affiliation(s)
- Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Richard W. Peck
- Pharma Research & Development (pRED), F. Hoffman-La Roche Ltd., Basel, Switzerland
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Murray A, Banota T, Guo GL, Smith LC, Meshanni JA, Lee J, Kong B, Abramova EV, Goedken M, Gow AJ, Laskin JD, Laskin DL. Farnesoid X receptor regulates lung macrophage activation and injury following nitrogen mustard exposure. Toxicol Appl Pharmacol 2022; 454:116208. [PMID: 35998709 PMCID: PMC9960619 DOI: 10.1016/j.taap.2022.116208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.
Collapse
Affiliation(s)
- Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Tanvi Banota
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
17
|
De Luca D, Alonso A, Autilio C. Bile acids-induced lung injury: update of reverse translational biology. Am J Physiol Lung Cell Mol Physiol 2022; 323:L93-L106. [DOI: 10.1152/ajplung.00523.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of bile acids in lung tissue is associated with some clinical features observed in various medical specialties, but it took time to understand that these are due to a "bile acid-induced lung injury" since specific translational studies and cross-disciplinary awareness were lacking. We used a reverse translational approach to update and summarize the current knowledge about the mechanisms of bile acid-induced lung injury. This has been done in a cross-disciplinary fashion since these conditions may occur in patients of various age and in different medical fields. We here define these clinical conditions, then we review the physiopathology of these conditions and the animal models used to mimic them and, finally, their pathobiology. Mechanisms of bile acid-induced lung injury have been partially clarified overtime and are represented by: 1) the interaction with secretory phospholipase A2 pathway, 2) the effect on surfactant function and structure, 3) the biological effects on inflammation and local immunity, 4) the direct cellular toxicity. These mechanisms are schematically illustrated and histological comparisons between ARDS induced by bile acids and other triggers are also provided. Based on these mechanisms we propose possible direct therapeutic applications and, finally, we discuss further research steps to improve the understanding of processes that generate pathological clinical conditions.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Paris Saclay University Hospital, Clamart, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Le Plessis Robinson, France
| | - Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| |
Collapse
|
18
|
Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Sci Rep 2021; 11:17788. [PMID: 34493738 PMCID: PMC8423735 DOI: 10.1038/s41598-021-96471-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023] Open
Abstract
Bile acid profiles are altered in obese individuals with asthma. Thus, we sought to better understand how obesity-related systemic changes contribute to lung pathophysiology. We also test the therapeutic potential of nitro-oleic acid (NO2-OA), a regulator of metabolic and inflammatory signaling pathways, to mitigate allergen and obesity-induced lung function decline in a murine model of asthma. Bile acids were measured in the plasma of healthy subjects and individuals with asthma and serum and lung tissue of mice with and without allergic airway disease (AAD). Lung function, indices of inflammation and hepatic bile acid enzyme expression were measured in obese mice with house dust mite-induced AAD treated with vehicle or NO2-OA. Serum levels of glycocholic acid and glycoursodeoxycholic acid clinically correlate with body mass index and airway hyperreactivity whereas murine levels of β-muricholic acid and tauro-β-muricholic acid were significantly increased and positively correlated with impaired lung function in obese mice with AAD. NO2-OA reduced murine bile acid levels by modulating hepatic expression of bile acid synthesis enzymes, with a concomitant reduction in small airway resistance and tissue elastance. Bile acids correlate to body mass index and lung function decline and the signaling actions of nitroalkenes can limit AAD by modulating bile acid metabolism, revealing a potential pharmacologic approach to improving the current standard of care.
Collapse
|
19
|
Francis M, Guo G, Kong B, Abramova EV, Cervelli JA, Gow AJ, Laskin JD, Laskin DL. Regulation of Lung Macrophage Activation and Oxidative Stress Following Ozone Exposure by Farnesoid X Receptor. Toxicol Sci 2021; 177:441-453. [PMID: 32984886 PMCID: PMC7548292 DOI: 10.1093/toxsci/kfaa111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammatory macrophages are known to contribute to ozone toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating bile acid and lipid homeostasis; it also exerts anti-inflammatory activity by suppressing macrophage NF-κB. Herein, we analyzed the role of FXR in regulating macrophage activation in the lung following ozone exposure. Treatment of wild-type (WT) mice with ozone (0.8 ppm, 3 h) resulted in increases in proinflammatory (F4/80+CD11c+CD11b+Ly6CHi) and anti-inflammatory (F4/80+CD11c+CD11b+Ly6CLo) macrophages in the lung. The accumulation of proinflammatory macrophages was increased in FXR-/- mice compared with WT mice; however, anti-inflammatory macrophage activation was blunted as reflected by reduced arginase and mannose receptor expression, a response correlated with decreased Nur77. This was associated with prolonged oxidative stress, as measured by 4-hydroxynonenal-modified proteins in the lung. Loss of FXR was accompanied by protracted increases in lung NF-κB activity and its target, inducible nitric oxide synthase in response to ozone. Levels of Tnf-α, Il-1β, Ccr2, Ccl2, Cx3cr1, and Cx3cl1 were also increased in lungs of FXR-/- relative to WT mice; conversely, genes regulating lipid homeostasis including Lxrα, Apoe, Vldlr, Abcg1, and Abca1 were downregulated, irrespective of ozone exposure. In FXR-/- mice, ozone caused an increase in total lung phospholipids, with no effect on SP-B or SP-D. Dyslipidemia was correlated with blunting of ozone-induced increases in positive end-expiratory pressure-dependent quasi-static pressure volume curves indicating a stiffer lung in FXR-/- mice. These findings identify FXR as a regulator of macrophage activation following ozone exposure suggesting that FXR ligands may be useful in mitigating inflammation and oxidative stress induced by pulmonary irritants.
Collapse
Affiliation(s)
- Mary Francis
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Grace Guo
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| |
Collapse
|
20
|
Fang X, Zhang S, Wang Z, Zhou J, Qi C, Song J. Cigarette smoke extract combined with LPS down-regulates the expression of MRP2 in chronic pulmonary inflammation may be related to FXR. Mol Immunol 2021; 137:174-186. [PMID: 34273652 DOI: 10.1016/j.molimm.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
The transporter multidrug resistance protein 2 (MRP2) plays an important role in chronic pulmonary inflammation by transporting cigarette smoke and other related inflammatory mediators. However, it is not completely clear whether pulmonary inflammation caused by cigarette smoke extract (CSE) and lipopolysaccharide (LPS) is related to MRP2 and its signal factors. In this study, CSE combined with LPS was used to establish an inflammation model in vivo and in vitro. We found that compared with the control group, after CSE combined with LPS treatment, the expression of MRP2 in rat lung tissue in vivo and human alveolar cell line in vitro was down-regulated, while the expression of inflammatory factors was up-regulated. Through silencing and overexpression of FXR, it was found that silent FXR could down-regulate MRP2 and up-regulate the expression of inflammatory factors. On the contrary, overexpression of FXR could up-regulate MRP2 and down-regulate the expression of inflammatory factors. Our results show that CSE combined with LPS can down-regulate the expression of MRP2 under inflammatory conditions, and the down-regulation of MRP2 expression may be achieved partly through the FXR signal pathway.
Collapse
Affiliation(s)
- Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
21
|
H. sinensis mycelium inhibits epithelial-mesenchymal transition by inactivating the midkine pathway in pulmonary fibrosis. Front Med 2021; 15:313-329. [PMID: 33908025 DOI: 10.1007/s11684-020-0737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/27/2019] [Indexed: 09/29/2022]
Abstract
The medical fungus Hirsutella sinensis has been used as a Chinese folk health supplement because of its immunomodulatory properties. Our previous studies established the antifibrotic action of Hirsutella sinensis mycelium (HSM) in the lung. The epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of idiopathic pulmonary fibrosis. The present study investigates the role of HSM in mediating EMT during the development of pulmonary fibrosis. HSM significantly inhibits bleomycin (BLM)-induced pulmonary fibrosis by blocking the EMT. In addition, the expression levels of midkine are increased in the lungs of the BLM-induced group. Further analysis of the results indicates that the mRNA level of midkine correlated positively with EMT. HSM markedly abrogates the transforming growth factor β-induced EMT-like phenotype and behavior in vitro. The activation of midkine related signaling pathway is ameliorated following HSM treatment, whereas this extract also caused an effective attenuation of the induction of EMT (caused by midkine overexpression) in vitro. Results further confirm that oral medication of HSM disrupted the midkine pathway in vivo. Overall, findings suggest that the midkine pathway and the regulation of the EMT may be considered novel candidate therapeutic targets for the antifibrotic effects caused by HSM.
Collapse
|
22
|
Elk-1 transcriptionally regulates ZC3H4 expression to promote silica-induced epithelial-mesenchymal transition. J Transl Med 2020; 100:959-973. [PMID: 32218530 DOI: 10.1038/s41374-020-0419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is a key priming activity of fibroblasts in pulmonary fibrosis during silicosis. Ets-like protein-1 (Elk-1) is a critical modulator that promotes functional changes in cells, and the effects are mediated by oxidative stress (OS). However, whether ELK-1 is involved in EMT of silicosis remains unclear. In addition, researchers have found that Elk-1 is involved in the expression of the gene zc3h12a, which encodes the protein MCPIP1, and MCPIP1 is a member of the zinc finger Cys-Cys-Cys-His (CCCH)-type protein family. A previous study from our lab showed that ZC3H4, which is also a member of the CCCH-type protein family, critically affected the regulation of EMT during silicosis. However, it has not yet been elucidated if ELK-1 acts at the promoter for zc3h4 to increase its expression in a mechanism that is similar to that of the zc3h12a gene and whether such regulation ultimately controls EMT. Therefore, we explored the correlation between ELK-1 and ZC3H4 expression and tested the underlying mechanisms affecting ELK-1 activation induced by silica. Our study identifies that SiO2-mediated EMT via ELK-1, with the upstream activity of OS and the downstream signaling of ZC3H4 expression resulting in enhanced EMT. These findings suggest that the nuclear transcription factor ELK-1 may be useful as a novel target for the treatment of pulmonary fibrosis.
Collapse
|
23
|
Liu Y, Wang C, Chen H, Zhang M, Zhu J, Zhang X, Ji L, Zhu S, Zhang W, Chen B. The profibrotic effects of chronic microaspiration of bile acids on lungs of rats at different stages. Int Immunopharmacol 2020; 84:106545. [PMID: 32388214 DOI: 10.1016/j.intimp.2020.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the profibrotic effects of chronic microaspiration of two major bile acids, including chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA), on lungs of rats at different stages, as well as the underlying mechanisms in vivo. A rat model was induced by weekly intratracheal instillation of DCA and CDCA. Our results showed that chronic microaspiration of bile acids resulted in alveolar structure disorder, and inflammatory cells infiltration in the pulmonary interstitium at the early stage. Subsequently, numerous fibroblasts were proliferated, and collagen deposition was profoundly increased over the interstitium of the airways and vessels. Compared with control group, the expression of α-smooth muscle actin, type I collagen, hydroxyproline, transforming growth factor-β1 (TGF-β1), and matrix metalloproteinase-9 in the lung tissues were remarkably elevated at the 2nd week, reached the highest level at the 6th week, and maintained high at the 8th week in both DCA- and CDCA-treated groups (P < 0.05). Furthermore, chronic microaspiration of bile acids led to higher levels of glutathione and malondialdehyde, while lower level of superoxide dismutase in lung tissues compared with controls (P < 0.05), thereby resulting in the oxidant/antioxidant enzyme imbalance in the formation of fibrosis. In addition, we also found a consistent growth in the expression of farnesoid X receptor (FXR) in both DCA- and CDCA-treated groups. Our findings suggested that chronic microaspiration of bile acids could initiate the process of pulmonary fibrosis from the early phase and promote its progression in a time-dependent manner, which likely involved the TGF-β1, oxidative stress, and FXR-related pathways.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Chu Wang
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Hao Chen
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Maowei Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Jiechen Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Xiaojiao Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Lei Ji
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Shuyang Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| | - Wenhui Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China.
| | - Bi Chen
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
24
|
Venosa A, Smith LC, Murray A, Banota T, Gow AJ, Laskin JD, Laskin DL. Regulation of Macrophage Foam Cell Formation During Nitrogen Mustard (NM)-Induced Pulmonary Fibrosis by Lung Lipids. Toxicol Sci 2019; 172:344-358. [PMID: 31428777 PMCID: PMC6876262 DOI: 10.1093/toxsci/kfz187] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrogen mustard (NM) is a vesicant known to target the lung, causing acute injury which progresses to fibrosis. Evidence suggests that activated macrophages contribute to the pathologic response to NM. In these studies, we analyzed the role of lung lipids generated following NM exposure on macrophage activation and phenotype. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in a time-related increase in enlarged vacuolated macrophages in the lung. At 28 days postexposure, macrophages stained positively for Oil Red O, a marker of neutral lipids. This was correlated with an accumulation of oxidized phospholipids in lung macrophages and epithelial cells and increases in bronchoalveolar lavage fluid (BAL) phospholipids and cholesterol. RNA-sequencing and immunohistochemical analysis revealed that lipid handling pathways under the control of the transcription factors liver-X receptor (LXR), farnesoid-X receptor (FXR), peroxisome proliferator-activated receptor (PPAR)-ɣ, and sterol regulatory element-binding protein (SREBP) were significantly altered following NM exposure. Whereas at 1-3 days post NM, FXR and the downstream oxidized low-density lipoprotein receptor, Cd36, were increased, Lxr and the lipid efflux transporters, Abca1 and Abcg1, were reduced. Treatment of naïve lung macrophages with phospholipid and cholesterol enriched large aggregate fractions of BAL prepared 3 days after NM exposure resulted in upregulation of Nos2 and Ptgs2, markers of proinflammatory activation, whereas large aggregate fractions prepared 28 days post NM upregulated expression of the anti-inflammatory markers, Il10, Cd163, and Cx3cr1, and induced the formation of lipid-laden foamy macrophages. These data suggest that NM-induced alterations in lipid handling and metabolism drive macrophage foam cell formation, potentially contributing to the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Tanvi Banota
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| |
Collapse
|
25
|
Nakada EM, Bhakta NR, Korwin-Mihavics BR, Kumar A, Chamberlain N, Bruno SR, Chapman DG, Hoffman SM, Daphtary N, Aliyeva M, Irvin CG, Dixon AE, Woodruff PG, Amin S, Poynter ME, Desai DH, Anathy V. Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresponsiveness by inhibiting UPR transducers. JCI Insight 2019; 4:98101. [PMID: 31045581 DOI: 10.1172/jci.insight.98101] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl β-muricholic acid (AβM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AβM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.
Collapse
Affiliation(s)
- Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nirav R Bhakta
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, UCSF School of Medicine, San Francisco, California, USA
| | - Bethany R Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Amit Kumar
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA.,Translational Airways Group, Discipline of Medical Science, University of Technology Sydney, Ultimo, Australia.,Woolcock Institute of Medical Research, University of Sydney, Glebe, Australia
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nirav Daphtary
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Minara Aliyeva
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Charles G Irvin
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Anne E Dixon
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, UCSF School of Medicine, San Francisco, California, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Dhimant H Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
26
|
Obeticholic acid alleviate lipopolysaccharide-induced acute lung injury via its anti-inflammatory effects in mice. Int Immunopharmacol 2018; 66:177-184. [PMID: 30468885 DOI: 10.1016/j.intimp.2018.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) is a common disease that may result in acute respiratory failure and death. However, there are still no effective treatments for ALI. Several studies have shown that farnesoid X receptor (FXR) has an anti-inflammatory effect. We investigated the effects of obeticholic acid (OCA), an agonist of FXR, on Lipopolysaccharide (LPS)-induced ALI in mice. Sixty male mice were randomly divided into six groups, and orally administered with or without OCA once daily for 3 consecutive days before LPS (1.0 mg/kg). Animals were sacrificed at 0 h, 2 h or 6 h after LPS. As expected, OCA enhanced pulmonary FXR activity. OCA prevented LPS-induced ALI. Additional experiment showed that OCA alleviated LPS-induced up-regulation of pulmonary pro-inflammatory and chemokine genes. Moreover, OCA also repressed LPS-induced the release of TNF-α and KC in serum and bronchoalveolar lavage fluid. In contrast, OCA further up-regulated LPS-induced the expression of Il-10, an anti-inflammatory cytokine. Further study showed that OCA inhibited LPS-evoked NF-κB signaling in the lungs. OCA attenuated LPS-induced ERK1/2, JNK, p38 and Akt phosphorylation in the lungs. Overall, these results suggest that OCA prevent LPS-induced ALI may be through enhancing pulmonary FXR activity and then blockading several inflammatory signaling pathways.
Collapse
|
27
|
Activation of Farnesoid X Receptor impairs the tumor-promoting function of breast cancer-associated fibroblasts. Cancer Lett 2018; 437:89-99. [DOI: 10.1016/j.canlet.2018.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 12/29/2022]
|
28
|
Wang Z, Bonella F, Li W, Boerner EB, Guo Q, Kong X, Zhang X, Costabel U, Kreuter M. Gastroesophageal Reflux Disease in Idiopathic Pulmonary Fibrosis: Uncertainties and Controversies. Respiration 2018; 96:571-587. [PMID: 30308515 DOI: 10.1159/000492336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of idiopathic pulmonary fibrosis (IPF), a rare, devastating disease with a median survival of 3-5 years, are not fully understood. Gastroesophageal reflux disease (GERD) is a frequent comorbidity encountered in IPF. Hypothetically, GERD-associated microaspiration may lead to persistent inflammation impairing lung infrastructure, thereby possibly accelerating the progression of IPF. IPF may increase intrathoracic pressure, which can aggravate GERD and vice versa. On the basis of the possible beneficial effects of antireflux or antacid therapy on lung function, acute exacerbation, and survival, the recent international IPF guideline recommends antacid therapies for patients with IPF, regardless of symptomatic GERD. However, due to newer conflicting data, several national guidelines do not support this recommendation. Elucidation of these questions by further clinical and bench-to-bedside research may provide us with rational clinical diagnostic and therapeutic approaches concerning GERD in IPF. The present review aims to discuss the latest data on the controversial association of IPF and GERD.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Respiratory and Critical Medicine, Zhengzhou University People's Hospital, The Provincial People's Hospital Affiliated to Henan University, Zhengzhou,
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Wenting Li
- Third Liver Unit, Department of Infectious Diseases and Hepatology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Eda B Boerner
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Qiongya Guo
- Department of Digestive Diseases, Zhengzhou University People's Hospital, The Provincial People's Hospital Affiliated to Henan University, Zhengzhou, China
| | - Xianglong Kong
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Medicine, Zhengzhou University People's Hospital, The Provincial People's Hospital Affiliated to Henan University, Zhengzhou, China
| | - Ulrich Costabel
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg and Translational Lung Research Center Heidelberg, member of the German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
29
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
30
|
Farnesoid X Receptor Activation Enhances Transforming Growth Factor β-Induced Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma Cells. Int J Mol Sci 2018; 19:ijms19071898. [PMID: 29958417 PMCID: PMC6073264 DOI: 10.3390/ijms19071898] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023] Open
Abstract
Farnesoid X receptor (FXR) is a receptor for bile acids and plays an important role in the regulation of bile acid metabolism in the liver. Although FXR has been shown to affect hepatocarcinogenesis through both direct and indirect mechanisms, potential roles of FXR in epithelial–mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) remain unclear. We examined the effect of several FXR ligands on EMT-related morphological changes in HCC cell lines, such as HuH-7 and Hep3B cells. FXR agonists (chenodeoxycholic acid, GW4064, and obeticholic acid)—but not an antagonist (guggulsterone)—induced actin polymerization and expression of N-cadherin and phosphorylated focal adhesion kinase, although they were less effective than transforming growth factor β (TGF-β). FXR agonist treatment enhanced TGF-β-induced EMT morphologic changes and FXR antagonist inhibited the effect of TGF-β. Thus, FXR activation enhances EMT in HCC and FXR antagonists may be EMT-suppressing drug candidates.
Collapse
|
31
|
Akiyama J, Kuribayashi S, Baeg MK, Bortoli N, Valitova E, Savarino EV, Kusano M, Triadafilopoulos G. Current and future perspectives in the management of gastroesophageal reflux disease. Ann N Y Acad Sci 2018; 1434:70-83. [PMID: 29766521 DOI: 10.1111/nyas.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Junichi Akiyama
- Division of Gastroenterology and HepatologyNational Center for Global Health and Medicine Tokyo Japan
| | - Shiko Kuribayashi
- Division of Gastroenterology and Hepatology, Integrative Center of Internal MedicineGunma University Hospital Maebashi Japan
| | - Myong Ki Baeg
- Division of Gastroenterology, Department of Internal MedicineCatholic Kwandong University College of Medicine, International St. Mary's Hospital Incheon South Korea
| | - Nicola Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of Pisa Pisa Italy
| | - Elen Valitova
- Department of Upper Gastrointestinal Tract DisordersClinical Scientific Centre Moscow Russia
| | - Edoardo V. Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and GastroenterologyUniversity of Padua Padua Italy
| | - Motoyasu Kusano
- Division of Gastroenterology and Hepatology, Integrative Center of Internal MedicineGunma University Hospital Maebashi Japan
| | | |
Collapse
|
32
|
Aldhahrani A, Powell J, Ladak S, Ali M, Ali S, Verdon B, Pearson J, Ward C. The Potential Role of Bile Acids in Acquired Laryngotracheal Stenosis. Laryngoscope 2018; 128:2029-2033. [PMID: 29399801 PMCID: PMC6334228 DOI: 10.1002/lary.27105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Gastroesophageal reflux is thought to be a risk factor for laryngotracheal stenosis. Bile acids are a component of gastric refluxate and have previously been implicated in the development of fibrosis in other airway subsites. There is clear evidence that bile acids reflux into the upper airway. We therefore investigated the potential role of bile acids in the pathophysiology of laryngotracheal fibrosis and stenosis, specifically investigating the highly conserved process of epithelial-mesenchymal transition (EMT). STUDY DESIGN Translational research study. METHODS Human primary tracheal epithelial cells (PTECs) were challenged with the four most common digestive bile acids (cholic, chenodeoxycholic, deoxycholic, and lithocholic). EMT markers transforming growth factor (TGF)-β1, Matrix metalloproteinase (MMP)-9, and procollagen proteins were measured in the supernatant at 48 hours via enzyme-linked immunosorbent assay. Real-time polymerase chain reaction was also used to measure E-cadherin and fibronectin expression. RESULTS Significantly greater concentrations of TGF-β1 and MMP-9 were measured in the culture supernatants of cells treated with each bile acid at 10 µmol/L. Lithocholic acid and deoxycholic acid induced significantly increased expression of procollagen protein. Upregulation of fibronectin and downregulation of E-cadherin were observed with all bile acids, except for deoxycholic acid. CONCLUSION This is the first proof of principle demonstration that physiologically relevant bile acid challenge induces EMT mechanisms in PTECs. This implies a potential role for bile acids in laryngotracheal scarring and airway remodeling of potential translational significance in laryngotracheal stenosis. LEVEL OF EVIDENCE NA. Laryngoscope, 128:2029-2033, 2018.
Collapse
Affiliation(s)
- Adil Aldhahrani
- Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom.,Faculty of Applied Medical Sciences, Taif University, Turabah, Saudi Arabia
| | - Jason Powell
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Otolaryngology, Head and Neck Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Shameem Ladak
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mahmoud Ali
- Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom.,Department of Otolaryngology, Mansoura University Hospital, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Verdon
- Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom
| | - Jeffrey Pearson
- Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
Liu X, Chen B, You W, Xue S, Qin H, Jiang H. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett 2018; 412:194-207. [PMID: 29074425 DOI: 10.1016/j.canlet.2017.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/01/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
|
34
|
Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017; 26:1215-1228. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review discusses the potential of FXR and TGR5 as therapeutic targets in the treatment of pulmonary disorders linked to metabolism and/or inflammation. Obeticholic acid (OCA) is the most clinically advanced bile acid-derived agonist for FXR-mediated anti-inflammatory and anti-fibrotic effects. It therefore represents an attractive pharmacological approach for the treatment of lung conditions characterized by vascular and endothelial dysfunctions. Expert opinion: Inflammation, vascular remodeling and fibrotic processes characterize the progression of pulmonary arterial hypertension (PAH) and idiopathic pulmonary fibrosis (IPF). These processes are only partially targeted by the available therapeutic options and still represent a relevant medical need. The results hereby summarized demonstrate OCA efficacy in preventing experimental lung disorders, i.e. monocrotaline-induced PAH and bleomycin-induced fibrosis, by abating proinflammatory and vascular remodeling progression. TGR5 is also expressed in the lung, and targeting the TGR5 pathway, using the TGR5 agonist INT-777 or the dual FXR/TGR5 agonist INT-767, could also contribute to the treatment of pulmonary disorders mediated by inflammation and fibrosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Annamaria Morelli
- b Department of Experimental and Clinical Medicine , University of Florence , Florence , Italy
| | | | - Mario Maggi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Linda Vignozzi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| |
Collapse
|
35
|
Jee AS, Corte TJ, Wort SJ, Eves ND, Wainwright CE, Piper A. Year in review 2016: Interstitial lung disease, pulmonary vascular disease, pulmonary function, paediatric lung disease, cystic fibrosis and sleep. Respirology 2017; 22:1022-1034. [PMID: 28544189 DOI: 10.1111/resp.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adelle S Jee
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tamera J Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Wort
- Pulmonary Hypertension Department, Royal Brompton Hospital and Imperial College, London, UK
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| | - Claire E Wainwright
- School of Medicine, Lady Cilento Children's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Piper
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Farnesoid X receptor, a novel proto-oncogene in non-small cell lung cancer, promotes tumor growth via directly transactivating CCND1. Sci Rep 2017; 7:591. [PMID: 28377627 PMCID: PMC5428828 DOI: 10.1038/s41598-017-00698-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR), a nuclear receptor for maintaining bile acid homeostasis, has been recognized as a tumor suppressor in enterohepatic tissues. However, its expression and functional role in non-small cell lung cancer (NSCLC) remain unclear. We report that FXR is significantly increased in NSCLC and that it predicts poor clinical outcomes in NSCLC patients. FXR knockdown in NSCLC cells inhibited in vitro cell proliferation, blocked xenograft growth in nude mice, and delayed the G1/S transition of the cell cycle, whereas ectopic overexpression of FXR promoted NSCLC cell proliferation. Mechanistic analysis demonstrated that FXR could directly bind to an inverted repeat-0 sequence in the CCND1 promoter and activate its transcription. Cyclin D1 overexpression rescued NSCLC cells from the delayed G1/S transition and the impaired cell proliferation induced by FXR knockdown. Importantly, a positive correlation between the expression of FXR and cyclin D1 was confirmed in NSCLC samples, and patients with high expression of both FXR and cyclin D1 had the worst prognosis. In summary, our results suggest that FXR has oncogenic potential in NSCLC development, providing mechanistic insights that could be exploited for both prognostic and therapeutic purposes.
Collapse
|
37
|
Chronic microaspiration of bile acids induces lung fibrosis through multiple mechanisms in rats. Clin Sci (Lond) 2017; 131:951-963. [PMID: 28341659 DOI: 10.1042/cs20160926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
Gastroesophageal reflux (GER) and microaspiration of duodenogastric refluxate have been recognized as a risk factor for pulmonary fibrosis. Recent evidence suggests that bile acid microaspiration may contribute to the development of lung fibrosis. However, the molecular evidence is scarce and the underlying mechanisms remain to be elucidated. We have recently demonstrated that bile acids induce activation of alveolar epithelial cells (AECs) and lung fibroblasts in vitro In the present study, a rat model of bile acid microaspiration was established by weekly intratracheal instillation of three major bile acids including chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). Repeated microaspiration of CDCA, DCA, and LCA caused fibrotic changes, including alveolar wall thickening and extensive collagen deposition, in rat lungs. Bile acid microaspiration also induced alveolar epithelial-mesenchymal transition (EMT), as indicated by up-regulation of mesenchymal markers α-smooth muscle actin (α-SMA) and vimentin, as well as down-regulaton of epithelial markers E-cadherin and cytokeratin in alveolar epithelium of rat lungs. The expression of fibrogenic mediators, including transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and periostin, was significantly elevated in rat lungs exposed to microaspiration of bile acids. Furthermore, microaspiration of bile acids also induced p-Smad3 and farnesoid X receptor (FXR) expression in rat lungs. Our findings suggest that microaspiration of bile acids could promote the development of pulmonary fibrosis in vivo, possibly via stimulating fibrogenic mediator expression and activating TGF-β1/Smad3 signaling and FXR.
Collapse
|
38
|
Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Sci Rep 2016; 6:37234. [PMID: 27853248 PMCID: PMC5112546 DOI: 10.1038/srep37234] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Renal fibrosis is the common pathway of most chronic kidney disease progression to end-stage renal failure. The nuclear receptor FXR (farnesoid X receptor), a multiple functional transcription factor, plays an important role in protecting against fibrosis. The TGFβ-Smad signaling has a central role in kidney fibrosis. However, it remains unclear whether FXR plays direct anti-fibrotic effect in renal fibrosis via regulating TGFβ-Smad pathway. In this study, we found that the level of FXR was negatively correlated with that of Smad3 and fibronectin (a marker of fibrosis) in human fibrotic kidneys. Activation of FXR suppressed kidney fibrosis and downregulated Smad3 expression, which was markedly attenuated by FXR antagonist. Moreover, the FXR-mediated repression of fibrosis was significantly alleviated by ectopic expression of Smad3. Luciferase reporter assay revealed that FXR activation inhibited the transcriptional activity of Smad3 gene promoter. The in vivo experiments showed that FXR agonist protected against renal fibrosis and downregulated Smad3 expression in UUO mice. These results suggested that FXR may serve as an important negative regulator for manipulating Smad3 expression, and the FXR/Smad3 pathway may be a novel target for the treatment of renal fibrosis.
Collapse
|
39
|
Chen B, You WJ, Xue S, Qin H, Zhao XJ, Zhang M, Liu XQ, Zhu SY, Jiang HD. Overexpression of farnesoid X receptor in small airways contributes to epithelial to mesenchymal transition and COX-2 expression in chronic obstructive pulmonary disease. J Thorac Dis 2016; 8:3063-3074. [PMID: 28066584 DOI: 10.21037/jtd.2016.11.08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) and cyclooxygenase-2 (COX-2) contribute to airway remodelling and inflammation in chronic obstructive pulmonary disease (COPD). Recent data suggest that the farnesoid X receptor (FXR), a nuclear receptor traditionally considered as bile acid-activated receptor, is also expressed in non-classical bile acids target tissues with novel functions beyond regulating bile acid homeostasis. This study aimed to investigate the potential role of FXR in the development of COPD, as well as factors that affect FXR expression. METHODS Expression of FXR, EMT biomarkers and COX-2 was examined by immunohistochemistry in lung tissues from non-smokers, smokers, and smokers with COPD. The role of FXR in TGF-β1-induced EMT and COX-2 expression in human bronchial epithelial (HBE) cells was evaluated in vitro. Factors regulating FXR expression were assessed in cultured HBE cells and a cigarette smoke-induced rat model of COPD. RESULTS Expression of FXR, EMT markers and COX-2 was significantly elevated in small airway epithelium of COPD patients compared with controls. The staining scores of FXR in small airway epithelium were negatively related with FEV1% of predicted of smokers without and with COPD. FXR agonist GW4064 remarkably enhanced and FXR antagonist Z-Guggulsterone significantly inhibited EMT changes in TGF-β1-treated HBE cells. Both chenodeoxycholic acid (CDCA) and GW4064 increased COX-2 expression in HBE cells, whereas Z-Guggulsterone dramatically restrained CDCA-induced COX-2 expression. Finally, FXR expression is induced by IL-4 and IL-13 in HBE cells, as well as by cigarette smoke exposure in a rat model of COPD. CONCLUSIONS Overexpression of FXR in small airway may contribute to airway remodelling and inflammation in COPD by regulating EMT and COX-2 expression.
Collapse
Affiliation(s)
- Bi Chen
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen-Jie You
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Xue
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Qin
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xu-Ji Zhao
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Miao Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xue-Qing Liu
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Yang Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Han-Dong Jiang
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|