1
|
Gonzalez-Padilla D, Eagles NJ, Cano M, Pertea G, Jaffe AE, Maynard KR, Hancock DB, Handa JT, Martinowich K, Collado-Torres L. Molecular impact of nicotine and smoking exposure on the developing and adult mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622149. [PMID: 39574597 PMCID: PMC11580964 DOI: 10.1101/2024.11.05.622149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Maternal smoking during pregnancy (MSDP) is associated with significant cognitive and behavioral effects on offspring. While neurodevelopmental outcomes have been studied for prenatal exposure to nicotine, the main psychoactive component of cigarette smoke, its contribution to MSDP effects has never been explored. Comparing the effects of these substances on molecular signaling in the prenatal and adult brain may provide insights into nicotinic and broader tobacco consequences that are developmental-stage specific or age-independent. Pregnant mice were administered nicotine or exposed to chronic cigarette smoke, and RNA-sequencing was performed on frontal cortices of postnatal day 0 pups born to these mice, as well as on frontal cortices and blood of the adult dams. We identified 1,010 and 4,165 differentially expressed genes (DEGs) in nicotine and smoking-exposed pup brains, respectively (FDR<0.05, Ns = 19 nicotine-exposed vs 23 vehicle-exposed; 46 smoking-exposed vs 49 controls). Prenatal nicotine exposure (PNE) alone was related to dopaminergic synapses and long-term synaptic depression, whereas MSDP was associated with the SNARE complex and vesicle transport. Both substances affected SMN-Sm protein complexes and postsynaptic endosomes. Analyses at the transcript, exon, and exon-exon junction levels supported gene level results and revealed additional smoking-affected processes. No DEGs at FDR<0.05 were found in adult mouse brain for any substance (12 nicotine-administered vs 11 vehicle-administered; 12 smoking-exposed vs 12 controls), nor in adult blood (12 smoking-exposed vs 12 controls), and only 3% and 6.41% of the DEGs in smoking-exposed pup brain replicated in smoking-exposed blood and human prenatal brain, respectively. Together, these results demonstrate variable but overlapping molecular effects of PNE and MSDP on the developing brain, and attenuated effects of both smoking and nicotine on adult versus fetal brain.
Collapse
|
2
|
Li K, Wang J, Fang L, Lou Y, Li J, Li Q, Luo Q, Zheng X, Fang J. Chronic inhalation of H 2S in low concentration induces immunotoxicity and inflammatory effects in lung tissue of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116279. [PMID: 38581906 DOI: 10.1016/j.ecoenv.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.
Collapse
Affiliation(s)
- Kexian Li
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Jian Wang
- Shanghai Radio Equipment Research Institute, Shanghai 201109, China; Shanghai Shentian Industrial Co., Ltd. Shanghai, 200090
| | - Liben Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Yinghua Lou
- Hubei Zhijiang People's Hospital, Hubei 443200, China
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qihui Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qun Luo
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jingjing Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Wang J, Liu J, Shao J, Chen H, Cui L, Zhang P, Yao Y, Zhou J, Bao Z. Cigarette smoking inhibits myoblast regeneration by promoting proteasomal degradation of NPAT protein and hindering cell cycle progression. Curr Res Toxicol 2024; 6:100161. [PMID: 38496008 PMCID: PMC10940918 DOI: 10.1016/j.crtox.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Cigarette smoking (CS) causes skeletal muscle dysfunction, leading to sarcopenia and worse prognosis of patients with diverse systemic diseases. Here, we found that CS exposure prevented C2C12 myoblasts proliferation in a dose-dependent manner. Immunoblotting assays verified that CS exposure promoted the expression of cell cycle suppressor protein p21. Furthermore, CS exposure significantly inhibited replication-dependent (RD) histone transcription and caused S phase arrest in the cell cycle during C2C12 proliferation. Mechanistically, CS deregulated the expression levels of Nuclear Protein Ataxia-Telangiectasia Locus (NPAT/p220). Notably, the proteasome inhibitor MG132 was able to reverse the expression of NPAT in myoblasts, implying that the degradation of CS-mediated NPAT is proteasome-dependent. Overexpression of NPAT also rescued the defective proliferation phenotype induced by CS in C2C12 myoblasts. Taken together, we suggest that CS exposure induces NPAT degradation in C2C12 myoblasts and impairs myogenic proliferation through NPAT associated proteasomal-dependent mechanisms. As an application of the proteasome inhibitor MG132 or overexpression of NPAT could reverse the impaired proliferation of myoblasts induced by CS, the recovery of myoblast proliferation may be potential strategies to treat CS-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinling Liu
- Department of Pulmonology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058 China
| | - Jingjing Shao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyu Chen
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyun Cui
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yinan Yao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianying Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhang Bao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
4
|
He S, Tian R, Zhang X, Yao Q, Chen Q, Liu B, Liao L, Gong Y, Yang H, Wang D. PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD. Clin Immunol 2023; 250:109293. [PMID: 36934848 DOI: 10.1016/j.clim.2023.109293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
The role of Peroxisome Proliferator-Activated Receptor-γ (PPARγ) in alveolar macrophages(AMs) polarization homeostasis is closely associated with airway remodeling in COPD, but the definite mechanism remains unclear. In this study, elevated percentage of M1-type AMs and the expression of functionally cytokines were found in COPD patients and mice, which closely related to the disease severity. PPARγ was markedly up-regulated in M2-type AMs and down-regulated in M1-type AMs, and was associated with disease severity in COPD. Co-cultured with M1- or M2-type AMs promoted the epithelial-mesenchymal transition (EMT) of airway epithelial cells and the proliferation of airway smooth muscle cells. Moreover, airway remodeling and functional damage were observed in both IL4R-/- COPD mice with runaway M1-type AMs polarization and TLR4-/- COPD mice with runaway M2-type AMs polarization. Cigarette extract (CS) or lipopolysaccharide (LPS) stimulated PPARγ-/- AMs showed more serious polarization disorder towards M1, as well as CS induced PPARγ-/- COPD mice, which led to more severe airway inflammation, lung function damage, and airway remodeling. Treatment with PPARγ agonist significantly improved the polarization disorder and function activity in CS/LPS stimulated-AMs by inhibiting the JAK-STAT, MAPK and NF-κB pathways, and alleviated the airway inflammation, restored the lung function and suppressed airway remodeling in CS induced-COPD mice. Our research demonstrates that polarization homeostasis of AMs mediated by PPARγ has the protective effect in airway remodeling, and may be a novel therapeutic target for the intervention and treatment of airway remodeling in COPD.
Collapse
Affiliation(s)
- Sirong He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ruoyuan Tian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinying Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingmei Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Quan Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Bicui Liu
- Department of Respiratory and Critical Care Medicine, The Bishan Hospital of Chongqing, Chongqing 404000, PR China
| | - Lele Liao
- Department of Respiratory Medicine, The Second Hospital of Jiulongpo District, Chongqing 400050, PR China
| | - Yuxuan Gong
- International medical college, Chongqing Medical University, Chongqing 401334, PR China
| | - Hua Yang
- Respiratory Department, Minda Hospital of Hubei Minzu University, Enshi 445000, PR China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Su Z, Luo L, Wu X, Wei B, Wang L, Liu F, Cai B. Association of the MARCO polymorphism rs6761637 with hepatocellular carcinoma susceptibility and clinical characteristics. Immunol Res 2022; 70:400-407. [PMID: 35364781 DOI: 10.1007/s12026-022-09271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/23/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) remains a significant health problem with a substantial genetic predisposition. The liver harbors the largest proportion of macrophages among all the solid organs. There is considerable controversy regarding the relationship between the macrophage receptor with collagenous structure (MARCO) and tumor development and progression. Accordingly, we performed this case-control study to determine whether associations exist between the MARCO single nucleotide polymorphism rs6761637 and HCC susceptibility and clinical characteristics. We successfully genotyped 586 HCC cases and 647 controls using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The overall genotype distribution of rs6761637 was similar in the HCC and control groups (P = 0.143). However, the CT + CC genotypes of rs6761637 were slightly more common in the HCC group among female (P = 0.021), overweight (body mass index ≥ 24 kg/m2, P = 0.003), and nonsmoking (P = 0.022) individuals. The minor C allele carriers had a 1.47-fold increased risk of developing large tumor nodules (P = 0.041). rs6761637 did not affect the recurrence-free or overall survival rate of patients with HCC (P = 0.247 and 0.304, respectively). In conclusion, this is the first report of the association between MARCO genetic variations and HCC risk. These results suggest that the MARCO rs6761637 polymorphism may play a regulatory role in HCC carcinogenesis, but it does not seem to predict prognosis.
Collapse
Affiliation(s)
- Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xiaojuan Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Lu Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Fei Liu
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Scavenger receptor MARCO contributes to macrophage phagocytosis and clearance of tumor cells. Exp Cell Res 2021; 408:112862. [PMID: 34626585 DOI: 10.1016/j.yexcr.2021.112862] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
Macrophage receptor with collagenous structure (MARCO) is a member of the class A scavenger receptor family which is expressed on the cell surface of macrophages. It is well known that MARCO avidly binds to unopsonized pathogens, leading to its ingestion by macrophages. However, the role of MARCO in the recognition and phagocytosis of tumor cells by macrophages remains poorly understood. In this study, we used lentiviral technology to knockdown and overexpress MARCO and investigated the ability of macrophages to phagocytose tumor cells. Our results showed that MARCO expression was correlated with the ability of macrophages to carry on phagocytosis. MARCO knockdown led to significant decreases in the number of engulfment pseudopodia of macrophages and inhibition of the phagocytosis of tumor cells. On the other hand, MARCO overexpression elevated activity of SYK, PI3K and Rac1 in macrophages, which led to changes in macrophage morphology and enhanced phagocytosis by promoting formation of stress fibers and pseudopodia. By Co-IP analysis we showed that MARCO directly binds to the β5 integrin of SL4 tumor cells. In summary, these results demonstrated the important role for MARCO in demonstrated tumor cells uptake and clearance by macrophages.
Collapse
|
7
|
Audousset C, McGovern T, Martin JG. Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches - Pulmonary Disease/Asthma. Front Physiol 2021; 12:727806. [PMID: 34658913 PMCID: PMC8511424 DOI: 10.3389/fphys.2021.727806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.
Collapse
Affiliation(s)
- Camille Audousset
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - Toby McGovern
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Lee KH, Woo J, Kim JY, Lee CH, Yoo CG. Cigarette smoke extract-induced downregulation of p300 is responsible for the impaired inflammatory cytokine response of macrophages. Cell Signal 2021; 85:110050. [PMID: 34044126 DOI: 10.1016/j.cellsig.2021.110050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) are susceptible to infection owing to the impaired immune function of alveolar macrophages. This is presumed to be caused, at least partially, by cigarette smoke (CS), which is a major risk factor for COPD. Although CS has been reported to inhibit Toll-like receptor (TLR) function and phagocytosis in macrophages, the molecular mechanism of CS-mediated impairment of macrophage immune function has not been completely elucidated. We investigated the effects of CS extracts (CSE) on macrophage immune function and its molecular mechanism. We assessed lipopolysaccharide (LPS, TLR4 ligand)-, Pam3CSK4 (TLR2 ligand)-, or CpG-oligodeoxynucleotide (TLR9 ligand)-induced IL-6, TNF-α, and IL-1β production in macrophages. Upregulation of IL-6, TNF-α, and IL-1β mRNA and protein by TLR ligands was suppressed on treatment with CSE. However, LPS-induced MAP kinase activation, IκBα degradation, and nuclear translocation of NF-κB were not impeded by CSE. In contrast, CSE significantly suppressed NF-κB transcriptional activity in the nucleus. We found that p300, which acetylates RelA/p65 at lysine 310, and acetyl-p65 (K310) were downregulated upon CSE treatment. Knock-down of p300 suppressed LPS-induced acetylation of NF-κB p65 and production of inflammatory cytokine. To summarize, these results suggest that CSE impair cytokine response by decreasing the expression levels of p300.
Collapse
Affiliation(s)
- Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Yeon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|