1
|
Yosri N, Gao S, Zhou R, Wang C, Zou X, El-Seedi HR, Guo Z. Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations. Food Chem 2025; 467:142395. [PMID: 39667301 DOI: 10.1016/j.foodchem.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Food contamination poses serious health risks, compelling the discovery of new methods to guarantee regulatory compliance and build consumer conviction. Surface Enhanced Raman Spectroscopy (SERS) has come into sight as a sophisticated approach for the ultrasensitive discovery of toxins in food and water, proposing non-destructive, quick, and precise analysis. Instantaneously, quantum dots (QDs) are astonishing nanomaterials, characterized by distinctive attributes such as quantum confinement and optical photostability. This article extends a decisive outline of SERS technology, pointing out its amalgamation with QDs and discussing numerous augmentation approaches i.e., chemical enhancement, electromagnetic enhancement, Van Hove singularities, the Brus equation, Förster resonance energy transfer, band gap energy, and quantum yield. The amalgamation of SERS with QDs commands an important promise in international food security and conservational sustainability. Nevertheless, QDs provide several compensations, they also aspect a few concerns, counting probable toxicity, stability problems, and predisposition to interference. To tackle these items, further research is required to synthesize safer, more stable QD materials and to refine protocols for practical real-world applications. While some reviews on SERS have been published recently, to our knowledge, the current review is the first one dedicated to QDs-assisted SERS in food safety.
Collapse
Affiliation(s)
- Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Baba FV, Esfandiari Z. Theoretical and practical aspects of risk communication in food safety: A review study. Heliyon 2023; 9:e18141. [PMID: 37539121 PMCID: PMC10395359 DOI: 10.1016/j.heliyon.2023.e18141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Currently, food safety hazards have introduced as one of the most important threats to public health worldwide. Considering numerous crises in the field of food safety at global, regional, and national levels, and their impact on the physical and mental health of consumers, it is very vital to evaluate risk communication strategies in each country. Food safety risk communication (FSRC) aims to provide the means for individuals to protect their health from food safety risks and make informed decisions about food risks. The purpose of this study is to present FSRC as one of the key parts of risk analysis, its importance considering the prevalence of food contamination and recent crises related to food. Additionally, the stages of implementation of FSRC are mentioned. In FSRC, it is essential to comply with the principles and prerequisites. There are various strategies for FSRC nowadays. Different platforms for FSRC are rapidly evolving. Choosing and evaluating the appropriate strategy according to the target group, consensus of stakeholders, cooperation and coordination of risk assessors and risk managers have a significant impact in order to improve and implement FSRC.
Collapse
Affiliation(s)
| | - Zahra Esfandiari
- Corresponding author. Hezar Jarib St, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
YU M, LIU P. Discussion on emergency management of food safety from the perspective of foodborne diseases caused by mycotoxins. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Goerlandt F, Li J. Forty Years of Risk Analysis: A Scientometric Overview. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:2253-2274. [PMID: 34784430 DOI: 10.1111/risa.13853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Risk Analysis was first published in 1981, established with a vision to provide a platform for inquiry into fundamental risk-related concepts and theories, and to disseminate new knowledge about methods and approaches for identifying, analyzing, evaluating, managing, and communicating risk. The journal has also contributed significantly to a scientific understanding of specific risks related to human health and safety, engineering, ecological, and social systems. Published on behalf of the Society for Risk Analysis, the journal has become a leading platform over its 40-year history. Complementing recent celebratory overviews and perspectives on the evolution, achievements, and future challenges for Risk Analysis, this article presents a scientometric overview of the journal between 1981 and 2020. The study presents high-level insights in the journal publication trends and structure and trends in the leading countries/regions, institutions, and authors, in relation to their respective collaboration networks. Furthermore, the structure and evolution of research focus issues is analyzed, and highly cited publications are identified. The findings are primarily intended to provide high-level insights, which may be useful for early career academics and risk practitioners to understand the structure and development of the research domain, and its main contributors and topics, and for experienced researchers to reflect on the achievements and future developments.
Collapse
Affiliation(s)
- Floris Goerlandt
- Department of Industrial Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jie Li
- National Science Library, Chinese Academy of Sciences, Beijing, China
- College of Safety Science & Engineering, Liaoning Technical University, Huludao, Liaoning, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Spinelli MA, Glidden DV, Gennatas ED, Bielecki M, Beyrer C, Rutherford G, Chambers H, Goosby E, Gandhi M. Importance of non-pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by SARS-CoV-2 and potentially disease severity. THE LANCET. INFECTIOUS DISEASES 2021; 21:e296-e301. [PMID: 33631099 PMCID: PMC7906703 DOI: 10.1016/s1473-3099(20)30982-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Adherence to non-pharmaceutical interventions to prevent the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been highly variable across settings, particularly in the USA. In this Personal View, we review data supporting the importance of the viral inoculum (the dose of viral particles from an infected source over time) in increasing the probability of infection in respiratory, gastrointestinal, and sexually transmitted viral infections in humans. We also review the available evidence linking the relationship of the viral inoculum to disease severity. Non-pharmaceutical interventions might reduce the susceptibility to SARS-CoV-2 infection by reducing the viral inoculum when there is exposure to an infectious source. Data from physical sciences research suggest that masks protect the wearer by filtering virus from external sources, and others by reducing expulsion of virus by the wearer. Social distancing, handwashing, and improved ventilation also reduce the exposure amount of viral particles from an infectious source. Maintaining and increasing non-pharmaceutical interventions can help to quell SARS-CoV-2 as we enter the second year of the pandemic. Finally, we argue that even as safe and effective vaccines are being rolled out, non-pharmaceutical interventions will continue to play an essential role in suppressing SARS-CoV-2 transmission until equitable and widespread vaccine administration has been completed.
Collapse
Affiliation(s)
- Matthew A Spinelli
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Efstathios D Gennatas
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Michel Bielecki
- Swiss Armed Forces, Medical Services, Ittigen, Switzerland; Travel Clinic, Institute for Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Chris Beyrer
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - George Rutherford
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Henry Chambers
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Eric Goosby
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|