1
|
Liadaki K, Zafiriou E, Giannoulis T, Alexouda S, Chaidaki K, Gidarokosta P, Roussaki-Schulze AV, Tsiogkas SG, Daponte A, Mamuris Z, Bogdanos DP, Moschonas NK, Sarafidou T. PDE4 Gene Family Variants Are Associated with Response to Apremilast Treatment in Psoriasis. Genes (Basel) 2024; 15:369. [PMID: 38540428 PMCID: PMC10970167 DOI: 10.3390/genes15030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Moderate-to-severe psoriasis (Ps) treatment includes systemic drugs and biological agents. Apremilast, a small molecule primarily metabolized by cytochrome CYP3A4, modulates the immune system by specifically inhibiting phosphodiesterase type 4 (PDE4) isoforms and is currently used for the treatment of Ps and psoriatic arthritis (PsA). Clinical trials and real-world data showed variable efficacy in response among Ps patients underlying the need for personalized therapy. This study implements a candidate-gene and a network-based approach to identify genetic markers associated with apremilast response in forty-nine Greek Ps patients. Our data revealed an association of sixty-four SNPs within or near PDE4 and CYP3A4 genes, four SNPs in ncRNAs ANRIL, LINC00941 and miR4706, which influence the abundance or function of PDE4s, and thirty-three SNPs within fourteen genes whose protein products either interact directly with PDE4 proteins or constitute components of the cAMP signaling pathway which is modulated by PDE4s. Notably, fifty-six of the aforementioned SNPs constitute eQTLs for the respective genes in relevant to psoriasis tissues/cells implying that these variants could be causal. Our analysis provides a number of novel genetic variants that, upon validation in larger cohorts, could be utilized as predictive markers regarding the response of Ps patients to apremilast treatment.
Collapse
Affiliation(s)
- Kalliopi Liadaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | | | - Sofia Alexouda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| | - Kleoniki Chaidaki
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | - Polyxeni Gidarokosta
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | - Angeliki-Viktoria Roussaki-Schulze
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (E.Z.); (K.C.); (P.G.); (A.-V.R.-S.)
| | - Sotirios G. Tsiogkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (S.G.T.); (A.D.); (D.P.B.)
| | - Athina Daponte
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (S.G.T.); (A.D.); (D.P.B.)
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 41500 Larissa, Greece; (S.G.T.); (A.D.); (D.P.B.)
| | - Nicholas K. Moschonas
- School of Medicine, University of Patras, 26500 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, 26504 Patras, Greece
| | - Theologia Sarafidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece; (K.L.); (Z.M.)
| |
Collapse
|
2
|
Jagodnik KM, Shvili Y, Bartal A. HetIG-PreDiG: A Heterogeneous Integrated Graph Model for Predicting Human Disease Genes based on gene expression. PLoS One 2023; 18:e0280839. [PMID: 36791052 PMCID: PMC9931161 DOI: 10.1371/journal.pone.0280839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Graph analytical approaches permit identifying novel genes involved in complex diseases, but are limited by (i) inferring structural network similarity of connected gene nodes, ignoring potentially relevant unconnected nodes; (ii) using homogeneous graphs, missing gene-disease associations' complexity; (iii) relying on disease/gene-phenotype associations' similarities, involving highly incomplete data; (iv) using binary classification, with gene-disease edges as positive training samples, and non-associated gene and disease nodes as negative samples that may include currently unknown disease genes; or (v) reporting predicted novel associations without systematically evaluating their accuracy. Addressing these limitations, we develop the Heterogeneous Integrated Graph for Predicting Disease Genes (HetIG-PreDiG) model that includes gene-gene, gene-disease, and gene-tissue associations. We predict novel disease genes using low-dimensional representation of nodes accounting for network structure, and extending beyond network structure using the developed Gene-Disease Prioritization Score (GDPS) reflecting the degree of gene-disease association via gene co-expression data. For negative training samples, we select non-associated gene and disease nodes with lower GDPS that are less likely to be affiliated. We evaluate the developed model's success in predicting novel disease genes by analyzing the prediction probabilities of gene-disease associations. HetIG-PreDiG successfully predicts (Micro-F1 = 0.95) gene-disease associations, outperforming baseline models, and is validated using published literature, thus advancing our understanding of complex genetic diseases.
Collapse
Affiliation(s)
- Kathleen M. Jagodnik
- The School of Business Administration, Bar-Ilan University, Ramat Gan, Israel
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America
| | - Yael Shvili
- Department of Surgery A, Meir Medical Center, Kfar Sava, Israel
| | - Alon Bartal
- The School of Business Administration, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
3
|
Kul Cinar O, Romano M, Guzel F, Brogan PA, Demirkaya E. Paediatric Behçet's Disease: A Comprehensive Review with an Emphasis on Monogenic Mimics. J Clin Med 2022; 11:1278. [PMID: 35268369 PMCID: PMC8911352 DOI: 10.3390/jcm11051278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Behçet's disease (BD) is a polygenic condition with a complex immunopathogenetic background and challenging diagnostic and therapeutic concepts. Advances in genomic medicine have provided intriguing insights into disease pathogenesis over the last decade, especially into monogenic mimics of BD. Although a rare condition, paediatric BD should be considered an important differential diagnosis, especially in cases with similar phenotypes. Emerging reports of monogenic mimics have indicated the importance of genetic testing, particularly for those with early-onset, atypical features and familial aggregation. Treatment options ought to be evaluated in a multidisciplinary setting, given the complexity and diverse organ involvement. Owing to the rarity of the condition, there is a paucity of paediatric trials; thus, international collaboration is warranted to provide consensus recommendations for the management of children and young people. Herein, we summarise the current knowledge of the clinical presentation, immunopathogenetic associations and disease mechanisms in patients with paediatric BD and BD-related phenotypes, with particular emphasis on recently identified monogenic mimics.
Collapse
Affiliation(s)
- Ovgu Kul Cinar
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK; (O.K.C.); (P.A.B.)
- Division of Medicine, National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Micol Romano
- Department of Pediatrics, Division of Pediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada;
- Canadian Behcet and Autoinflammatory Disease Center (CAN-BE-AID), University of Western Ontario, London, ON N6A 4V2, Canada
| | - Ferhat Guzel
- Molecular Genetics Laboratories, Department of Research and Development, Ant Biotechnology, Istanbul 34775, Turkey;
| | - Paul A. Brogan
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK; (O.K.C.); (P.A.B.)
- Great Ormond Street Institute of Child Health, University College London, 30 Guildford Street, London WC1N 1EH, UK
| | - Erkan Demirkaya
- Department of Pediatrics, Division of Pediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada;
- Canadian Behcet and Autoinflammatory Disease Center (CAN-BE-AID), University of Western Ontario, London, ON N6A 4V2, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada
| |
Collapse
|
4
|
Kohn LL, Braun M, Cordoro KM, McCalmont TH, Shah SD, Frieden IJ, Mathur AN. Skin and Mucosal Manifestations in NEMO Syndrome: A Case Series and Literature Review. Pediatr Dermatol 2022; 39:84-90. [PMID: 34989033 DOI: 10.1111/pde.14905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To characterize the skin and mucosal findings of NEMO syndrome. METHODS Retrospective review of clinical characteristics from a cohort of two families with mutations in IKBKG (the NEMO-encoding gene). A literature review identified 86 studies describing 192 patients with IKBKG mutations whose data were also included. SETTING Single center with literature review. PARTICIPANTS Patients with mutations in IKBKG from our center and reported in the literature. MAIN OUTCOMES AND MEASURES Skin and mucosal characteristics of patients with NEMO syndrome. RESULTS In addition to ectodermal dysplasia and recurrent infections, male patients had findings of ichthyosis, palmoplantar keratoderma, and inflammatory skin diseases. Both male and female patients had mucocutaneous ulcers and slow-to-heal chronic wounds. In combination with patients from the literature, 59% (85/144) of males had ectodermal dysplasia with anhidrosis (EDA) features, and 8% and 10% (12/144; 6/63) of males and females had dental findings, respectively. 4% (6/144) of males and 32% (20/63) of females had mucocutaneous ulcers. Ichthyosis/xerosis was present in 15% of males (21/144) but only 2% (1/63) females. Similarly, 13% (18/144) of male patients presented with dermatitis while this was reported in only 2% (1/63) of females. CONCLUSIONS Our results both confirm and expand upon the known spectrum of mucocutaneous findings in NEMO syndrome. Further genetic studies are needed to correlate specific mutations to clinical and morphologic subtypes.
Collapse
Affiliation(s)
- Lucinda L Kohn
- Department of Dermatology, University of Colorado, Denver, Colorado, USA.,Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Mitchell Braun
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Kelly M Cordoro
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Timothy H McCalmont
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA.,Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Sonal D Shah
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA.,Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ilona J Frieden
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Anubhav N Mathur
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Ayón-Pérez MF, Topete-Córdoba JJ, Agraz-Cibrián JM, Ortiz-Martínez L, Durán-Avelar MDJ, Vázquez-Reyes A, Vibanco-Pérez N, Gutiérrez-Franco J, Zambrano-Zaragoza JF. The influence of the -94 Ins/Del ATTG polymorphism of NFkB on the anti-CCP antibody levels in patients with rheumatoid arthritis. Medicine (Baltimore) 2021; 100:e28301. [PMID: 34918708 PMCID: PMC8677897 DOI: 10.1097/md.0000000000028301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by an inflammatory process that affects mainly synovial tissue in joints, and by the production of cyclic citrullinated peptides (anti-CCP) antibodies. In the inflammatory process the regulation of the nuclear factor kappa B (NFkB) transcription factor activation is a key point in the production of inflammatory cytokines. On the other hand, polymorphisms in several genes could contribute to the promotion of the inflammatory process observed in RA, and the association of the rs28362491 polymorphism in the NFkB gene with RA has been studied in different population. Therefore, it could be one of the interest targets to analyze their association with RA in a Mexican population.This is a case-control study to determine the influence of rs28362491 in the NFkB gene on RA and on clinical features of this disease, such as anti-CCP antibody levels, Disease Activity Score, and Health Assessment Questionnaire-Disability Index.The genotype of rs28362491 in the NFkB gene was determined in 140 RA patients and 135 healthy controls using the polymerase chain reaction-restriction fragment length polymorphism method with the enzyme PflMI. The following clinical variables were also determined: anti-CCP levels, Disease Activity Score, and Spanish version of the Health Assessment Questionnaire Disability-Index.Although no association of the polymorphism as a risk/protection factor with RA was found, the RA patients who carried the Ins/Ins genotype showed higher anti-CCP levels, while those with the Del/Del genotype showed higher Spanish version of the Health Assessment Questionnaire-Disability Index levels, compared to the other genotypes.The NFkB -94 Ins/Del ATTG (rs28362491) polymorphism is, therefore, associated with higher levels of anti-CCP antibodies, though no significant association as a risk or protection factor in RA cases was identified.
Collapse
Affiliation(s)
- Miriam Fabiola Ayón-Pérez
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| | | | - Juan Manuel Agraz-Cibrián
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
- Maestria en Salud Pública, Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| | - Liliana Ortiz-Martínez
- Clinica de Reumatologia, Servicio de Medicina Interna, Instituto Mexicano del Seguro Social HGZ No. 1, Tepic, Nayarit, Mexico
| | - Ma. de Jesús Durán-Avelar
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| | - Alejandro Vázquez-Reyes
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| | - Norberto Vibanco-Pérez
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| | - Jorge Gutiérrez-Franco
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| | - José Francisco Zambrano-Zaragoza
- Unidad Academica de Ciencias Quimico Biológicas y Farmaceuticas-Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
- Maestria en Salud Pública, Universidad Autonoma de Nayarit, Tepic, Nayarit, Mexico
| |
Collapse
|
6
|
Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon. J Pers Med 2021; 11:jpm11101045. [PMID: 34683186 PMCID: PMC8537608 DOI: 10.3390/jpm11101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcopenia is a disease characterized by progressive reduction in muscle mass and strength or function. Although it is known that sarcopenia may be associated with environmental factors, studies suggest the identification of genes related to skeletal muscle maintenance that explain the susceptibility to the disease. OBJECTIVE To analyze the influence of NFkB1 gene polymorphism on susceptibility to sarcopenia in the elderly. METHODS This is a case-control study, which included 219 elderly people, 74 elderly people with sarcopenia, and 145 without sarcopenia. Samples were analyzed for NFkB1 gene polymorphism (rs28362491), genotyped in PCR, and followed by fragment analysis. To avoid misinterpretation due to population substructure, we applied a previously developed set of 61 informative ancestral markers that were genotyped by multiplex PCR. We used logistic regression to identify differences in genotypic frequencies between elderly people with and without sarcopenia. RESULTS It was observed that the NFkB1 gene polymorphism presented frequencies of 24%, 50%, and 26% for the genotype DEL/DEL, DEL/INS, and INS/INS, respectively. Furthermore, elderly individuals with the INS/INS genotype had increased chances (p = 0.010; OR:2.943; 95%CI:1.301-6.654) for the development of sarcopenia. CONCLUSION The INDEL polymorphism of the NFkB1 gene (rs28362491) may influence the susceptibility to sarcopenia in the elderly in elderly people in the Amazon.
Collapse
|
7
|
Zeng Z, Sun QQ, Zhang W, Wen QW, Wang TH, Qin W, Xiao DM, Zhang Z, Huang H, Mo YJ, Wu XD, Cen H. Assessment of genetic polymorphisms within nuclear factor-κB signaling pathway genes in rheumatoid arthritis: Evidence for replication and genetic interaction. Int Immunopharmacol 2021; 100:108089. [PMID: 34464884 DOI: 10.1016/j.intimp.2021.108089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study was performed to replicate the associations of genetic polymorphisms within nuclear factor-κB (NF-κB) signaling pathway genes with rheumatoid arthritis (RA), and to further examine genetic interactions in a Chinese population. METHODS A total of eleven single-nucleotide polymorphisms (SNPs) were genotyped in 594 RA patients and 604 healthy controls. RESULTS Genetic association analysis revealed that NFKBIE rs2233434, TNIP1 rs10036748 and BLK rs13277113 were significantly associated with RA, cyclic citrullinated peptide (CCP)-positive RA and rheumatoid factor (RF)-positive RA, and TNFAIP3 rs2230926 was significantly associated with CCP-positive RA. Significant additive interaction was observed between NFKB1 rs28362491 and IKBKE rs12142086 (RERI = 0.76, 95% CI 0.13-1.38; AP = 0.57, 95% CI 0.11-1.03), NFKBIE rs2233434 and BLK rs13277113 (RERI = 1.41, 95% CI 0.88-1.94; AP = 0.85, 95% CI 0.50-1.20), NFKBIL rs2071592 and TNIP1 rs10036748 (RERI = 0.59, 95% CI 0.17-1.02; AP = 0.46, 95% CI 0.05-0.87), UBE2L3 rs5754217 and TNFSF4 rs2205960 (RERI = 0.50, 95% CI 0.16-0.84; AP = 0.57, 95% CI 0.09-1.05). Significant multiplicative interaction was detected between BLK rs13277113 and UBE2L3 rs5754217 (p = 0.02), BLK rs13277113 and TNFSF4 rs2205960 (p = 0.03). CONCLUSIONS Our results lent further support to the role of NF-κB signaling pathway in the pathogenesis of RA from a genetic perspective.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Preventive Medicine, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Qing-Qing Sun
- Department of Health Education and Chronic Disease Prevention, Yinzhou District Center for Disease Control and Prevention, 1221 Xueshi Road, Ningbo, Zhejiang, 315100, PR China
| | - Wei Zhang
- Department of Preventive Medicine, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Qin-Wen Wen
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Ting-Hui Wang
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Wen Qin
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Dong-Mei Xiao
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Zhen Zhang
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Hua Huang
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Yi-Jun Mo
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Xiu-Di Wu
- Department of Rheumatology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 59 Liuting Road, Ningbo, Zhejiang, 315010, PR China
| | - Han Cen
- Department of Preventive Medicine, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
8
|
Baltus THL, Morelli NR, de Farias CC, Trugilo KP, Okuyama NCM, de Oliveira KB, de Melo LB, Smaili SM, Barbosa DS. Association of -94 ATTG insertion/deletion NFkB1 and c.*126G>A NFkBIA genetic polymorphisms with oxidative and nitrosative stress biomarkers in Brazilian subjects with Parkinson's Disease. Neurosci Lett 2020; 740:135487. [PMID: 33161109 DOI: 10.1016/j.neulet.2020.135487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder, resulting dopaminergic neuronal cell death in the substantia nigra. The disease is characterized by major motor impairment, being bradykinesia, rest tremor, rigidity and loss of postural reflexes the most common, while autonomic dysfunctions, sleep disturbances and psychiatric disorders are some of the wide range of non-motor symptoms. Several processes have been identified to be associated with disease development, such as mitochondrial dysfunction, oxidative/nitrosative stress and neuroinflammation. NF-κB is an important transcription factor that regulates several inflammatory elements and pathways, and polymorphisms on NFKB1 and NFKBIA genes can potentially influence redox balance towards a pro-oxidative frame, modulating disease progression. Evaluation of these polymorphisms in the redox status of PD subjects could provide new insights on the pathogenesis of this disorder. The study aimed to test associations of -94 in./del ATTG NFKB1 (rs28362491) and c.*126G > A NFKBIA (rs696) polymorphisms with PD development, and to test the influence of both polymorphisms on oxidative/nitrosative stress (OS/NS) parameters. A total of 110 Brazilian individuals were enrolled, being 55 subjects recruited from University Hospital of Londrina as the PD group, and 55 subjects matched for age, sex and ethnicity composed the healthy control (HC) group. NFkB1 and NFkBIA polymorphisms were genotyped by PCR-RFLP. Lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), sulfhydryl groups (SH), total radical trapping antioxidant parameter (TRAP) and paraoxonase-1 activity (PON-1) were assessed. Despite no association of polymorphisms on disease development was observed, in PD subjects the NFKB1 del/del genotype was associated with higher levels of LOOH, while NFkBIA GA and AA genotypes were associated with higher NOx levels, suggesting that NFkB plays a role in PD susceptbility. In conclusion, the prospect of genetic polymorphisms of elements involved in inflammation and OS/NS might be a new approach to unravel PD etiology.
Collapse
Affiliation(s)
- Thiago Hissnauer Leal Baltus
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.
| | - Nayara Rampazzo Morelli
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Carine Coneglian de Farias
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Kleber Paiva Trugilo
- Department of General Pathology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Nádia Calvo Martins Okuyama
- Department of General Pathology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Karen Brajão de Oliveira
- Department of General Pathology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Lucio Baena de Melo
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Clinical Medicine Neurology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Suhaila Mahmoud Smaili
- Department of Physiotherapy, Program of Masters and Doctoral Degree in Rehabilitation Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Décio Sabbatini Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
9
|
Perazzio SF, Andrade LEC, de Souza AWS. Understanding Behçet's Disease in the Context of Innate Immunity Activation. Front Immunol 2020; 11:586558. [PMID: 33193413 PMCID: PMC7606308 DOI: 10.3389/fimmu.2020.586558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Behçet´s disease (BD) is a heterogeneous condition consisting of idiopathic systemic vasculitis affecting large and small blood vessels of different types (i.e., arteries, veins, or capillaries). The disease frequently occurs in young adults without gender predilection, differently from several other autoimmune conditions. This challenging illness has recently been proposed by some authors as an example of complex autoinflammatory syndrome. Although much remains unanswered about BD pathogenesis, recent understanding of some aspects of innate immunity have clarified a few issues (and raised others). HLA-B*51 represents the strongest genetic risk factor for BD to date, albeit several other HLA-independent loci have also been associated with the disease. The consistent hyper-reactivity against Streptococcus sanguinis antigens and alterations in oral and gut microbioma suggests that infectious agents may play an important role. Moreover, functional abnormalities of pattern recognition receptors, especially Toll-like receptors in monocytes, have been demonstrated in patients with BD and can be associated with the development of the disease. Neutrophil hyperactivity is one of the most consistent findings in BD pathogenesis, as demonstrated by exacerbated constitutive oxidative burst, chemotaxis and NET formation. However, some studies suggest that the phagocyte-activated status in BD is not primary to the disease itself, but rather restricted to a fraction of patients with severe disease activity, and probably secondary to activating soluble factors carried by serum/plasma from BD patients. Herein we review the state of the art on BD etiopathogenesis with special emphasis on the participation of the innate immune system
Collapse
Affiliation(s)
- Sandro F Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis E C Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Perazzio SF, Allenspach EJ, Eklund KK, Varjosalo M, Shinohara MM, Torgerson TR, Seppänen MRJ. Behçet disease (BD) and BD-like clinical phenotypes: NF-κB pathway in mucosal ulcerating diseases. Scand J Immunol 2020; 92:e12973. [PMID: 32889730 DOI: 10.1111/sji.12973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Behçet's disease (BD) is a heterogeneous multi-organ disorder in search of a unified pathophysiological theory and classification. The disease frequently has overlapping features resembling other disease clusters, such as vasculitides, spondyloarthritides and thrombophilias with similar genetic risk variants, namely HLA-B*51, ERAP1, IL-10, IL-23R. Many of the BD manifestations, such as unprovoked recurrent episodes of inflammation and increased expression of IL-1, IL-6 and TNFα, overlap with those of the hereditary monogenic autoinflammatory syndromes, positioning BD at the crossroads between autoimmune and autoinflammatory syndromes. BD-like disease associates with various inborn errors of immunity, including familial Mediterranean fever, conditions related to dysregulated NF-κB activation (eg TNFAIP3, NFKB1, OTULIN, RELA, IKBKG) and either constitutional trisomy 8 or acquired trisomy 8 in myelodysplastic syndromes. We review here the recent advances in the immunopathology of BD, BD-like diseases and the NF-κB pathway suggesting new elements in the elusive BD etiopathogenesis.
Collapse
Affiliation(s)
- Sandro F Perazzio
- Seattle Children's Research Institute, University of Washington and Center for Immunity and Immunotherapies, Seattle, WA, USA.,Division of Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eric J Allenspach
- Seattle Children's Research Institute, University of Washington and Center for Immunity and Immunotherapies, Seattle, WA, USA
| | - Kari K Eklund
- Division of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Markku Varjosalo
- Division of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland.,Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Michi M Shinohara
- Divisions of Dermatology and Dermatopathology, University of Washington, Seattle, WA, USA
| | | | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Al-Shajrawi OM, Basit E, Baig AA. HIF1 (rs11549465) and NFKB1 (rs28362491) variants association with obesity in Malaysia. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Functional variations of NFKB1 and NFKB1A in inflammatory disorders and their implication for therapeutic approaches. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a sophisticated transcription factor that is particularly important in the inflammatory response, but it regulates more than 400 individual and dependent genes for parts of the apoptotic, angiogenic, and proliferative, differentiative, and cell adhesion pathways. NF-κB function is directly inhibited by the binding of inhibitor of κB (IκB), and the imbalance between NF-κB and IκB has been linked to the development and progression of cancer and a variety of inflammatory disorders. These observations might broaden the horizon of current knowledge, particularly on the pathogenesis of inflammatory diseases considering the roles of NF-κB and IκB. In this context, we focus this narrative review on a comparative discussion of our findings with other literature regarding variations of NFKB1 and NFKB1A and their association with susceptibility to widespread inflammatory disorders (such as atherosclerosis, morbid obesity, Behçet syndrome, Graves disease, Hashimoto disease) and common cancers (such as gliomas).
Collapse
|
13
|
Mossallam GI, Fattah RA, Mahmoud HK. Nuclear factor-κB1 and MicroRNA-146a polymorphisms and risk of acute graft versus host disease post allogeneic stem cell transplantation. Immunobiology 2019; 225:151876. [PMID: 31813598 DOI: 10.1016/j.imbio.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe inflammatory complication of haematopoeitic stem cell transplantation. The nuclear factor- Kappa Beta (NF-κB) signaling pathway regulates T cell activation. The NF-κB controls the expression of microRNA-146a (miR-146a) that in turn regulates NF-κB activation through a negative feedback loop. We aim to analyze the association between NF-κB1 encoding p50 (rs28362491, -94 in.ertion/deletion ATTG) and miR-146a (rs2910164, G > C) polymorphisms and risk of aGVHD. Genotyping was performed for 135 HLA-matched donors using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP).The incidence of aGVHD grades II-IV was 24/135 (17.8 %). NF-κB1 genotype and cytomegalovirus infection were significantly associated with risk of aGVHD II-IV (p = 0.022, HR = 3.17, 95 % CI:1.18-8.51 and p = 0.048, HR = 2.56, 95 % CI:1.01-6.52, respectively). In multivariate analysis, NF-κB1homozygous deletion/deletion genotype was the only independent risk factor associated with aGVHD II-IV (p = 0.013, HR = 3.50, 95 % CI:1.30-9.44). No significant association could be observed between miR-146a polymorphism and aGVHD. Combined NF-κB1 and miR146a genotype analysis warrants investigation in a larger cohort. Our preliminary data do not support the association between miR146a and aGVHD, but suggest an association between NF-κB1 and risk of aGVHD that may pave the way for the development of a novel targeted therapy if proved in a larger cohort.
Collapse
Affiliation(s)
- Ghada I Mossallam
- Bone Marrow Transplantation Laboratory Unit, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Raafat Abdel Fattah
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| | - Hossam K Mahmoud
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| |
Collapse
|
14
|
Concetti J, Wilson CL. NFKB1 and Cancer: Friend or Foe? Cells 2018; 7:cells7090133. [PMID: 30205516 PMCID: PMC6162711 DOI: 10.3390/cells7090133] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
Current evidence strongly suggests that aberrant activation of the NF-κB signalling pathway is associated with carcinogenesis. A number of key cellular processes are governed by the effectors of this pathway, including immune responses and apoptosis, both crucial in the development of cancer. Therefore, it is not surprising that dysregulated and chronic NF-κB signalling can have a profound impact on cellular homeostasis. Here we discuss NFKB1 (p105/p50), one of the five subunits of NF-κB, widely implicated in carcinogenesis, in some cases driving cancer progression and in others acting as a tumour-suppressor. The complexity of the role of this subunit lies in the multiple dimeric combination possibilities as well as the different interacting co-factors, which dictate whether gene transcription is activated or repressed, in a cell and organ-specific manner. This review highlights the multiple roles of NFKB1 in the development and progression of different cancers, and the considerations to make when attempting to manipulate NF-κB as a potential cancer therapy.
Collapse
Affiliation(s)
- Julia Concetti
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK.
| | - Caroline L Wilson
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK.
| |
Collapse
|
15
|
Comanns P. Passive water collection with the integument: mechanisms and their biomimetic potential. ACTA ACUST UNITED AC 2018; 221:221/10/jeb153130. [PMID: 29789349 DOI: 10.1242/jeb.153130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced.
Collapse
Affiliation(s)
- Philipp Comanns
- RWTH Aachen University, Institute of Biology II (Zoology), Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
16
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
17
|
Oner T, Arslan C, Yenmis G, Arapi B, Tel C, Aydemir B, Sultuybek GK. Association of NFKB1A and microRNAs variations and the susceptibility to atherosclerosis. J Genet 2017; 96:251-259. [DOI: 10.1007/s12041-017-0768-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Soydas T, Karaman O, Arkan H, Yenmis G, Ilhan MM, Tombulturk K, Tasan E, Kanigur Sultuybek G. The Correlation of Increased CRP Levels with NFKB1 and TLR2 Polymorphisms in the Case of Morbid Obesity. Scand J Immunol 2017; 84:278-283. [PMID: 27507606 DOI: 10.1111/sji.12471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Indexed: 11/28/2022]
Abstract
Morbid obesity (MO) is associated with an increase in circulating levels of systemic acute phase proteins such as C-reactive protein (CRP). Toll-like receptor is possible candidate for inflammatory responses which is mainly mediated by NFKB1. The aim of this study was to investigate the relationship between NFKB1 and Toll-like receptor (TLR) 2 polymorphisms and the risk of MO in a Turkish population in the context of CRP serum levels which may contribute to susceptibility to the disease. We analysed the distribution of NFKB1-94 ins/del ATTG rs28362491 and TLR2 Arg753Gln rs5743708 polymorphisms using PCR-RFLP method and CRP serum levels using ELISA method in 213 MO and 200 healthy controls. The frequency of the ins/ins genotype and ins allele of rs28362491 was significantly higher in the patients compared to control group (P: 0.0309; P: 0.0421, respectively). Additionally, the frequency of GG genotype and G allele of rs5743708 was found to be statistically higher in the patient group (P: 0.0421; P < 0.0001, respectively). In addition, serum CRP levels (>20 mg/l) in MO patients with ins/ins genotype were significantly higher than in patients with del/ins genotype (P: 0.0309). Serum CRP levels were also higher in MO patients with GG genotype and G allele (P: 0.0001). According to combined analysis, the wild type of rs28362491 and rs5743708 polymorphisms (ins/ins/GG genotype) was also significantly higher in the patient group versus the control group when compared with the combined ins/ins/GA and del/ins/GA genotype (P < 0.0001). Therefore, our findings suggest that rs28362491 and rs5743708 polymorphisms were significantly associated with MO disease through acting by modulating serum CRP levels.
Collapse
Affiliation(s)
- T Soydas
- Department of Medical Biology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - O Karaman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bezmialem Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - H Arkan
- Department of Medical Biology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - G Yenmis
- Department of Medical Biology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | - M M Ilhan
- Department of Endocrinology and Metabolism, Umraniye Training and Research Hospital, Umraniye, Istanbul, Turkey
| | - K Tombulturk
- Department of Medical Biology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - E Tasan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bezmialem Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - G Kanigur Sultuybek
- Department of Medical Biology, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Kaustio M, Haapaniemi E, Göös H, Hautala T, Park G, Syrjänen J, Einarsdottir E, Sahu B, Kilpinen S, Rounioja S, Fogarty CL, Glumoff V, Kulmala P, Katayama S, Tamene F, Trotta L, Morgunova E, Krjutškov K, Nurmi K, Eklund K, Lagerstedt A, Helminen M, Martelius T, Mustjoki S, Taipale J, Saarela J, Kere J, Varjosalo M, Seppänen M. Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J Allergy Clin Immunol 2017; 140:782-796. [PMID: 28115215 DOI: 10.1016/j.jaci.2016.10.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/02/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Emma Haapaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timo Hautala
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Giljun Park
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Research Programs Unit, Genome-scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Sanna Kilpinen
- Department of Internal Medicine, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Christopher L Fogarty
- Folkhälsan Institute of Genetics, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Petri Kulmala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO) and MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Competence Centre on Health Technologies, Tartu, Estonia
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anssi Lagerstedt
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Merja Helminen
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Timi Martelius
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janna Saarela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Bogunia-Kubik K, Wysoczańska B, Piątek D, Iwaszko M, Ciechomska M, Świerkot J. Significance of Polymorphism and Expression of miR-146a and NFkB1 Genetic Variants in Patients with Rheumatoid Arthritis. Arch Immunol Ther Exp (Warsz) 2017; 64:131-136. [PMID: 28083614 PMCID: PMC5334424 DOI: 10.1007/s00005-016-0443-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
Abstract
MicroRNA-146a (miR-146a) has been shown to play an important role in the regulation of inflammatory innate immune responses, and found to be differentially expressed in rheumatoid arthritis (RA). Through NF-κB pathway, this molecule is able to stimulate the release of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-17. It has been also suggested that single-nucleotide polymorphisms (SNPs) in miRNA sequences may alter miRNA expression and that miR-146a rs2910164 SNP may contribute to RA development. These observations prompted us to analyze the potential associations between the miR-146a-3p (rs2910164, G > C) and NFkB1 (rs28362491, ins/del ATTG) polymorphisms and miR-146a-5p expression in patients’ sera in relation to clinical outcome of the treatment as well as predisposition to RA. Genotyping was performed in 111 patients and 130 healthy individuals while 16 controls and 13 RA patients (before and after three months of therapy with TNF-α inhibitors (TNFi)) were studied for the circulating miR-146a-5p serum expression level. Patients carrying the NFkB1 ins/ins genotype were characterized by worse response to TNFi treatment (p = 0.023). In patients, before TNFi therapy, expression levels of miR-146a-5p were less (0.422 ± 0.171) as compared to those detected after three months of treatment (1.809 ± 0.658, p = 0.033) and observed for healthy controls (5.302 ± 2.112, p = 0.048). Moreover, patients with higher circulating miR-146a-5p levels after three months of TNFi administration were more frequently carrying the rs2910164-C allele (p = 0.032). These results support the hypothesis that miR-146a might be involved in pathogenesis of RA and imply that miR-146a-3p polymorphism may be associated with miR-146a-5p levels in serum after anti-TNF-α treatment.
Collapse
Affiliation(s)
- Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dagmara Piątek
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Milena Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marzena Ciechomska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
| |
Collapse
|
21
|
Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study. Mediators Inflamm 2016; 2016:7945848. [PMID: 27293321 PMCID: PMC4884830 DOI: 10.1155/2016/7945848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023] Open
Abstract
Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1) mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1), in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α), and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (si)RNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.
Collapse
|
22
|
Chen F, Xu L, Zhao T, Xiao X, Pan Y, Hou S. Genetic Variation in the REL Gene Increases Risk of Behcet's Disease in a Chinese Han Population but That of PRKCQ Does Not. PLoS One 2016; 11:e0147350. [PMID: 26784953 PMCID: PMC4718718 DOI: 10.1371/journal.pone.0147350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022] Open
Abstract
Genome-wide association studies (GWAS) and candidate gene studies have identified the REL and PRKCQ genes as risk loci for various autoimmune diseases. The purpose of the present study was to investigate the association of the REL and PRKCQ genes with Behcet’s disease (BD) in a Chinese Han population. A case-control study was conducted on three single nucleotide polymorphisms (SNPs), rs13031237, rs702873, and rs842647 of the REL gene and three SNPs (rs4750316, rs11258747, and rs947474) of the PRKCQ gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in a total of 623 BD patients and 1,074 healthy controls. Multiple variables were assessed, including age, sex distribution, and extra-ocular findings. In the present study, the frequencies of rs842647 GG genotypes and rs842647 G alleles were significantly higher in patients than in controls and those of the rs842647 AG genotypes were lower in patients than in controls [GG genotype: Bonferroni corrected P-value for gender adjustment (Pca) = 0.0074, odds ratio (OR) = 1.63; G allele: Pca = 0.0072, OR = 1.57; AG genotype: Pca = 0.024, OR = 0.63, respectively]. No statistically significant differences in the frequencies of rs702873, rs13031237, rs4750316, rs11258747, and rs947474 between BD patients and controls were observed. Stratification analysis indicated that the REL rs842647 polymorphism was associated with BD patients with skin lesions. No significant association of the other five SNPs between BD patients with other extra-ocular findings, including genital ulcer, arthritis, and positive pathergy test results was found. The REL rs842647 polymorphism may be a susceptibility factor for BD pathogenesis and skin lesions, which indicate that c-Rel may be involved in the pathogenesis and skin lesions of BD through the NF-κB pathway.
Collapse
Affiliation(s)
- Feilan Chen
- Chongqing Medical University, Chongqing, P. R. China
- Chongqing Engineering Research Center For Rodent Laboratory Animals, Chongqing, P. R. China
- * E-mail:
| | - Lei Xu
- Chongqing Medical University, Chongqing, P. R. China
- Chongqing Engineering Research Center For Rodent Laboratory Animals, Chongqing, P. R. China
| | - Tingting Zhao
- Chongqing Medical University, Chongqing, P. R. China
- Chongqing Engineering Research Center For Rodent Laboratory Animals, Chongqing, P. R. China
| | - Xiang Xiao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, P. R. China
| | - Yongquan Pan
- Chongqing Medical University, Chongqing, P. R. China
- Chongqing Engineering Research Center For Rodent Laboratory Animals, Chongqing, P. R. China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, P. R. China
| |
Collapse
|
23
|
Expression of MicroRNAs in the Eyes of Lewis Rats with Experimental Autoimmune Anterior Uveitis. Mediators Inflamm 2015; 2015:457835. [PMID: 26713004 PMCID: PMC4680116 DOI: 10.1155/2015/457835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022] Open
Abstract
Purpose. This study aimed to determine the dynamic changes of NF-κB-related microRNAs (miRNAs) and cytokines over the course of experimental autoimmune anterior uveitis (EAAU) and elucidate the possible immunopathogenesis. Materials and Methods. Uveitis was induced in Lewis rats using bovine melanin-associated antigen. The inflammatory activity of the anterior chamber was clinically scored, and leukocytes in the aqueous humor were quantified. RNA was extracted from the iris/ciliary bodies and popliteal lymph nodes to reveal the dynamic changes of eight target miRNAs (miR-155-5p, miR-146a-5p, miR-182-5p, miR-183-5p, miR-147b, miR-21-5p, miR-9-3p, and miR-223-3p) and six cytokine mRNAs (IFN-γ, IL-17, IL-12A, IL-1β, IL-6, and IL-10). In situ hybridization of miRNA and enzyme-linked immunosorbent assay quantification of cytokines were performed to confirm the results. Results. Disease activity and leukocyte quantification were maximum at day 15 after immunization. The profiling of miRNA revealed downregulation of miR-146a-5p, miR-155-5p, miR-223-3p, and miR-147b and upregulation of miR-182-5p, miR-183-5p, and miR-9-3p. Cytokine analysis revealed IFN-γ, IL-17, IL-12A, IL-1β, and IL-6 overexpression, with IL-10 downregulation. Conclusions. Dynamic changes of miRNAs were observed over the course of EAAU. By initiating NF-κB signaling, the expressions of downstream cytokines and effector cells from the Th17 and Th1 lineages were sequentially activated, contributing to the disease.
Collapse
|
24
|
Oner T, Yenmis G, Tombulturk K, Cam C, Kucuk OS, Yakicier MC, Dizman D, Sultuybek GK. Association of Pre-miRNA-499 rs3746444 and Pre-miRNA-146a rs2910164 Polymorphisms and Susceptibility to Behcet's Disease. Genet Test Mol Biomarkers 2015; 19:424-30. [DOI: 10.1089/gtmb.2015.0016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tuba Oner
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Guven Yenmis
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kubra Tombulturk
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Cansu Cam
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ozlem Su Kucuk
- Department of Dermatological and Venereal Diseases, Bezmialem Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - Mustafa Cengiz Yakicier
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem University, Istanbul, Turkey
| | - Didem Dizman
- Department of Dermatological and Venereal Diseases, Bezmialem Medical Faculty, Bezmialem University, Istanbul, Turkey
| | - Gonul Kanıgur Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
25
|
Hubáček JA, Pikhart H, Peasey A, Kubínová R, Bobák M. Nobody Is Perfect: Comparison of the Accuracy of PCR-RFLP and KASP™ Method for Genotyping. ADH1B and FTO Polymorphisms as Examples. Folia Biol (Praha) 2015; 61:156-60. [PMID: 26441205 DOI: 10.14712/fb2015061040156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
DNA genotyping is among the most common analyses currently performed in scientific research. Two high-throughput genotyping techniques are widely used - the "classic" PCR-RFLP and probe-based methods such as TaqMan® PCR assay or KASP™ genotyping. The probe-based techniques are claimed to be more accurate than PCR-RFLP; however, the evidence for this claim is sparse. We have directly compared results of genotyping of two SNPs (rs1229984 and rs17817449) obtained by the PCR-RFLP and KASP™ in 1,502 adult Caucasians. The results were identical in 97.3 % and 95.9 % cases, respectively. Discrepancies (either different results or result obtained with one but not with the other method) were addressed by confirmatory analysis using direct sequencing. The sequencing revealed that both methods can give incorrect results, but the frequency of incorrect genotyping of rs1229984 and rs17817449 was very low for both methods - 0.1 % and 0.5 %, respectively, for PCR-RFLP and 0.1 % and 0.3 %, respectively, for KASP™. These results confirm that the KASP™ technique is slightly more accurate, but it achieves slightly lower call rates than PCR-RFLP. When carefully set up, both PCR-RFLP and KASP™ could have accuracy of 99.5 % or higher.
Collapse
Affiliation(s)
- J A Hubáček
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - H Pikhart
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - A Peasey
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - R Kubínová
- National Institute of Public Health, Prague, Czech Republic
| | - M Bobák
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| |
Collapse
|