1
|
Cong J, Wang T, Hahm B, Xia C. Positive Regulation of Cellular Proteins by Influenza Virus for Productive Infection. Int J Mol Sci 2025; 26:3584. [PMID: 40332127 PMCID: PMC12027300 DOI: 10.3390/ijms26083584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Influenza viruses cause annual epidemics and occasional pandemics through respiratory tract infections, giving rise to substantial morbidity and mortality worldwide. Influenza viruses extensively interact with host cellular proteins and exploit a variety of cellular pathways to accomplish their infection cycle. Some of the cellular proteins that display negative effects on the virus are degraded by the virus. However, there are also various proteins upregulated by influenza at the expression and/or activation levels. It has been well-established that a large number of host antiviral proteins such as type I interferon-stimulated genes are elevated by viral infection. On the other hand, there are also many cellular proteins that are induced directly by the virus, which are considered as pro-viral factors and often indispensable for rigorous viral propagation or pathogenicity. Here, we review the recent advances in our understanding of the cellular factors deemed to be upregulated and utilized by the influenza virus. The focus is placed on the functions of these pro-viral proteins and the mechanisms associated with promoting viral amplification, evading host immunity, or enhancing viral pathogenicity. Investigating the process of how influenza viruses hijack cellular proteins could provide a framework for inventing the host-factor-targeted drugs to conquer influenza.
Collapse
Affiliation(s)
- Jiayu Cong
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Ting Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Chuan Xia
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| |
Collapse
|
2
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|