1
|
Wu T, Yan S, Yeh YW, Fang Y, Xiang Z. FcγR-dependent apoptosis regulates tissue persistence of mucosal and connective tissue mast cells. Eur J Immunol 2023; 53:e2250221. [PMID: 37137469 DOI: 10.1002/eji.202250221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Rodent mast cells can be divided into two major subtypes: the mucosal mast cell (MMC) and the connective tissue mast cell (CTMC). A decade-old observation revealed a longer lifespan for CTMC compared with MMC. The precise mechanisms underlying such differential tissue persistence of mast cell subsets have not been described. In this study, we have discovered that mast cells expressing only one receptor, either FcγRIIB or FcγRIIIA, underwent caspase-independent apoptosis in response to IgG immune complex treatment. Lower frequencies of CTMC in mice that lacked either FcγRIIB or FcγRIIIA compared with WT mice were recorded, especially in aged mice. We proposed that this paradigm of FcγR-mediated mast cell apoptosis could account for the more robust persistence of CTMC, which express both FcγRIIB and FcγRIIIA, than MMC, which express only FcγRIIB. Importantly, we reproduced these results using a mast cell engraftment model, which ruled out possible confounding effects of mast cell recruitment or FcγR expression by other cells on mast cell number regulation. In conclusion, our work has uncovered an FcγR-dependent mast cell number regulation paradigm that might provide a mechanistic explanation for the long-observed differential mast cell subset persistence in tissues.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Shirong Yan
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yu Fang
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, P. R. China
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Espinal A, Epperly MW, Mukherjee A, Fisher R, Shields D, Wang H, Huq MS, Hamade DF, Vlad AM, Coffman L, Buckanovich R, Yu J, Leibowitz BJ, van Pijkeren JP, Patel RB, Stolz D, Watkins S, Ejaz A, Greenberger JS. Intestinal Radiation Protection and Mitigation by Second-Generation Probiotic Lactobacillus-reuteri Engineered to Deliver Interleukin-22. Int J Mol Sci 2022; 23:5616. [PMID: 35628427 PMCID: PMC9145862 DOI: 10.3390/ijms23105616] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri-Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.
Collapse
Affiliation(s)
- Alexis Espinal
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Diala Fatima Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (L.C.); (R.B.)
| | - Ronald Buckanovich
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (L.C.); (R.B.)
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (J.Y.); (B.J.L.)
| | - Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (J.Y.); (B.J.L.)
| | | | - Ravi B. Patel
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (D.S.); (S.W.)
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (D.S.); (S.W.)
| | - Asim Ejaz
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| |
Collapse
|
3
|
Adams OJ, von Gunten S. Recent Advances in Experimental Allergy. Int Arch Allergy Immunol 2018; 177:281-289. [PMID: 30423562 DOI: 10.1159/000494440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 11/19/2022] Open
Abstract
Atopic disorders are on the rise and pose a great burden on society. A better understanding of the underlying mechanisms is required for the development of improved or novel therapeutic strategies. Here we aim to highlight recent advances in experimental allergy, with a particular focus on proposed treatment alternatives for airway disorders, atopic dermatitis, and food allergy. Furthermore, we discuss recent work focusing on molecular and cellular mechanisms that might offer candidates for future preventive or therapeutic intervention.
Collapse
|