1
|
Bao X, Xu Z, Wang X, Zhang T, Sha X, Sun A, Ye H, Yang H. Canonical and Truncated Transglutaminase-2 Drive TGF-β1 Autocrine Loop to Induce Fibrosis in Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2025; 66:22. [PMID: 40358584 DOI: 10.1167/iovs.66.5.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Purpose To evaluate the role of transglutaminase 2 (TGM2) in fibroblasts of Graves' orbitopathy (GO) and explore its potential mechanisms in orbital fibrosis. Methods A key gene selection model for GO was established through bioinformatics and machine learning. Orbital fibroblasts (OFs) were cultured from orbital connective tissue samples. Subsequently, three-dimensional spheroid models were developed. Lentiviral transduction was used to establish TGM2 overexpression and knockdown models. Fibrosis levels were assessed using Western blot, PCR, and collagen contraction assays. TGM2 activity was evaluated by FITC-cadaverine staining and the colorimetric assay. The canonical and truncated TGM2 isoforms were selectively introduced to restore expression. TGF-β1 levels in cell culture supernatants were measured by ELISA. Results The results of bioinformatics and machine learning indicate that TGM2 is a key characteristic gene in GO. Knockdown of TGM2 markedly suppresses the expression of fibrosis-related genes and reduces the proliferation, migration, and adhesion capabilities of fibroblasts. TGF-β1 can upregulate TGM2 expression and induces the production of both the canonical and truncated TGM2 forms. Similar results were observed in GO tissues. Restoration of TGM2_V2 expression following knockdown can prevent the inhibitory effects on guanosine triphosphate (GTP). Additionally, TGM2 is involved in the autocrine loop of TGF-β1. TGM2 inhibitors significantly reverse the fibrotic response induced by TGF-β1 in OFs. Conclusions TGM2 is highly expressed in GO fibroblasts and plays a key role in the TGF-β1 autocrine feedback loop. TGF-β1 induces more truncated TGM2 variants that bypass GTP inhibition, exacerbating fibrosis. Inhibiting TGM2 activity significantly reduces fibrosis markers.
Collapse
Affiliation(s)
- Xiaoli Bao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhihui Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaotong Sha
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Anqi Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Meshram DD, Fanutti C, Pike CVS, Coussons PJ. Membrane Association of the Short Transglutaminase Type 2 Splice Variant (TG2-S) Modulates Cisplatin Resistance in a Human Hepatocellular Carcinoma (HepG2) Cell Line. Curr Issues Mol Biol 2024; 46:4251-4270. [PMID: 38785527 PMCID: PMC11119602 DOI: 10.3390/cimb46050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by the pre-treatment of cells with the TG2 enzyme inhibitor cystamine. Further analysis revealed that, whereas the full-length TG2 isoform (TG2-L) was almost completely cytoplasmic in its distribution, the majority of the short TG2 isoform (TG2-S) was membrane-associated in both parental and chemoresistant HepG2 cells. Following the induction of cisplatin toxicity in non-chemoresistant parental cells, TG2-S, together with cisplatin, quickly relocated to the cytosolic fraction. Conversely, no cytosolic relocalisation of TG2-S or nuclear accumulation cisplatin was observed, following the identical treatment of chemoresistant cells, where TG2-S remained predominantly membrane-associated. This suggests that the deficient subcellular relocalisation of TG2-S from membranous structures into the cytoplasm may limit the apoptic response to cisplatin toxicity in chemoresistant cells. Structural analysis of TG2 revealed the presence of binding motifs for interaction of TG2-S with the membrane scaffold protein LC3/LC3 homologue that could contribute to a novel mechanism of chemotherapeutic resistance in HepG2 cells.
Collapse
Affiliation(s)
- Dipak D. Meshram
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Cristina Fanutti
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
| | - Claire V. S. Pike
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
| | - Peter J. Coussons
- Cancer Cell Biology Subgroup, Biomedical Research Group, School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (D.D.M.); (C.F.); (C.V.S.P.)
| |
Collapse
|
3
|
Arbildi P, Calvo F, Macías V, Rodríguez-Camejo C, Sóñora C, Hernández A. Study of tissue transglutaminase spliced variants expressed in THP-1 derived macrophages exhibiting distinct functional phenotypes. Immunobiology 2023; 228:152752. [PMID: 37813017 DOI: 10.1016/j.imbio.2023.152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Tissue transglutaminase (TG2) expressed in monocytes and macrophage is known to participate in processes during either early and resolution stages of inflammation. The alternative splicing of tissue transglutaminase gene is a mechanism that increases its functional diversity. Four spliced variants are known with truncated C-terminal domains (TGM2_v2, TGM2_v3, TGM2_v4a, TGM2_v4b) but scarce information is available about its expression in human monocyte and macrophages. We studied the expression of canonical TG2 (TGM2_v1) and its short spliced variants by RT-PCR during differentiation of TPH-1 derived macrophages (dTHP-1) using two protocols (condition I and II) that differ in Phorbol-12-myristate-13-acetate dose and time schedule. The production of TNF-α and IL-1β in supernatant of dTHP-1, measured by ELISA in supernatants showed higher proinflammatory milieu in condition I. We found that the expression of all mRNA TG2 spliced variants were up-regulated during macrophage differentiation and after IFN-γ treatment of dTHP-1 cells in both conditions. Nevertheless, the relative fold increase or TGM2_v3 in relation with TGM2_v1 was higher only with the condition I. M1/M2-like THP-1 macrophages obtained with IFN-γ/IL-4 treatments showed that the up-regulation of TGM2_v1 induced by IL-4 was higher in relation with any short spliced variants. The qualitative profile of relative contribution of spliced variants in M1/M2-like THP-1 cells showed a trend to higher expression of TGM2_v3 in the inflammatory functional phenotype. Our results contribute to the knowledge about TG2 spliced variants in the biology of monocyte/macrophage cells and show how the differentiation conditions can alter their expression and cell function.
Collapse
Affiliation(s)
- Paula Arbildi
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Federico Calvo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Victoria Macías
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay
| | - Claudio Rodríguez-Camejo
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| | - Cecilia Sóñora
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay; Escuela Universitaria de Tecnología Médica (EUTM), Facultad de Medicina, Universidad de la República, Alfredo Navarro S/N, Montevideo 11600, Uruguay.
| | - Ana Hernández
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Area Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Alfredo Navarro 3051, Montevideo 11600, Uruguay.
| |
Collapse
|
4
|
Arbildi P, Rodríguez-Camejo C, Perelmuter K, Bollati-Fogolín M, Sóñora C, Hernández A. Hypoxia and inflammation conditions differentially affect the expression of tissue transglutaminase spliced variants and functional properties of extravillous trophoblast cells. Am J Reprod Immunol 2022; 87:e13534. [PMID: 35263002 DOI: 10.1111/aji.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Persistent hypoxia and inflammation beyond early pregnancy are involved in a bad outcome because of defective trophoblast invasiveness. Tissue transglutaminase (TG2) coregulates several cell functions. An aberrant expression and/or transamidation activity could contribute to placental dysfunction. METHOD OF STUDY The first-trimester trophoblast cell line (Swan-71) was used to study TG2 expression and cell functions in the absence or presence of inflammatory cytokines (TNF-α, IL-1β) or chemical hypoxia (CoCl2 ). We analyzed The concentration of cytokines in the supernatant by ELISA; Cell migration by scratch assay; NF-κB activation by detection of nuclear p65 by immunofluorescence or flow cytometry using a Swan-71 NF-κB-hrGFP reporter cell line. Tissue transglutaminase expression was analyzed by immunoblot and confocal microscopy. Expression of spliced mRNA variants of tissue transglutaminase was analyzed by RT-PCR. Transamidation activity was assessed by flow cytometry using 5-(biotinamido)-pentylamine substrate. RESULTS Chemical hypoxia and TGase inhibition, but not inflammatory stimuli, decreased Swan-71 migration. IL-6 production was also decreased by chemical hypoxia, but increased by inflammation. Intracellular TGase activity was increased by all stimuli, but NF-κB activation was observed only in the presence of proinflammatory cytokines. TG2 expression was decreased by CoCl2 and TNF-α. Translocation of TG2 and p65 to nuclei was observed only with TNF-α, without colocalization. Differential relative expression of spliced variants of mRNA was observed between CoCl2 and inflammatory stimuli. CONCLUSION The observed decrease in total TG2 expression and relative increase in short variants under hypoxia conditions could contribute to impaired trophoblast invasion and impact on pregnancy outcome.
Collapse
Affiliation(s)
- Paula Arbildi
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Claudio Rodríguez-Camejo
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Sóñora
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica (EUTM)-Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Ana Hernández
- Laboratorio de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| |
Collapse
|
5
|
Singla P, Bhardwaj RD. Enzyme promiscuity – A light on the “darker” side of enzyme specificity. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1696779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
6
|
The Role of Tissue Transglutaminase in Cancer Cell Initiation, Survival and Progression. Med Sci (Basel) 2019; 7:medsci7020019. [PMID: 30691081 PMCID: PMC6409630 DOI: 10.3390/medsci7020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (transglutaminase type 2; TG2) is the most ubiquitously expressed member of the transglutaminase family (EC 2.3.2.13) that catalyzes specific post-translational modifications of proteins through a calcium-dependent acyl-transfer reaction (transamidation). In addition, this enzyme displays multiple additional enzymatic activities, such as guanine nucleotide binding and hydrolysis, protein kinase, disulfide isomerase activities, and is involved in cell adhesion. Transglutaminase 2 has been reported as one of key enzymes that is involved in all stages of carcinogenesis; the molecular mechanisms of action and physiopathological effects depend on its expression or activities, cellular localization, and specific cancer model. Since it has been reported as both a potential tumor suppressor and a tumor-promoting factor, the role of this enzyme in cancer is still controversial. Indeed, TG2 overexpression has been frequently associated with cancer stem cells’ survival, inflammation, metastatic spread, and drug resistance. On the other hand, the use of inducers of TG2 transamidating activity seems to inhibit tumor cell plasticity and invasion. This review covers the extensive and rapidly growing field of the role of TG2 in cancer stem cells survival and epithelial–mesenchymal transition, apoptosis and differentiation, and formation of aggressive metastatic phenotypes.
Collapse
|
7
|
Differential Expression of Tissue Transglutaminase Splice Variants in Peripheral Blood Mononuclear Cells of Primary Progressive Multiple Sclerosis Patients. Med Sci (Basel) 2018; 6:medsci6040108. [PMID: 30486475 PMCID: PMC6313466 DOI: 10.3390/medsci6040108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 02/03/2023] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory and neurodegenerative disorder of the central nervous system (CNS) characterized by inflammation and immune cell infiltration in the brain parenchyma. Tissue transglutaminase (TG2), a calcium-dependent cross-linking enzyme, has been shown to be present in infiltrating MHC-II positive cells in lesions of patients suffering from MS. Moreover, TG2 mRNA levels in peripheral blood mononuclear cells (PBMC)-derived from primary progressive (PP)-MS patients correlated with clinical parameters, thus highlighting the importance of TG2 in MS pathology. In the present study, we further characterized TG2 expression by measuring the mRNA levels of full-length TG2 and four TG2 alternative splice variants in PBMCs derived from PP-MS patients and healthy control (HC) subjects. In PP-MS-derived PBMCs, TG2 variant V4b was significantly higher expressed, and both V4a and V4b variants were relatively more expressed in relation to full-length TG2. These observations open new avenues to unravel the importance of TG2 alternative splicing in the pathophysiology of PP-MS.
Collapse
|