1
|
Jackeline Pérez-Vega M, Manuel Corral-Ruiz G, Galán-Salinas A, Silva-García R, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Enid Sánchez-Torres L. Acute lung injury is prevented by monocyte locomotion inhibitory factor in an experimental severe malaria mouse model. Immunobiology 2024; 229:152823. [PMID: 38861873 DOI: 10.1016/j.imbio.2024.152823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Acute lung injury caused by severe malaria (SM) is triggered by a dysregulated immune response towards the infection with Plasmodium parasites. Postmortem analysis of human lungs shows diffuse alveolar damage (DAD), the presence of CD8 lymphocytes, neutrophils, and increased expression of Intercellular Adhesion Molecule 1 (ICAM-1). P. berghei ANKA (PbA) infection in C57BL/6 mice reproduces many SM features, including acute lung injury characterized by DAD, CD8+ T lymphocytes and neutrophils in the lung parenchyma, and tissular expression of proinflammatory cytokines and adhesion molecules, such as IFNγ, TNFα, ICAM, and VCAM. Since this is related to a dysregulated immune response, immunomodulatory agents are proposed to reduce the complications of SM. The monocyte locomotion inhibitory factor (MLIF) is an immunomodulatory pentapeptide isolated from axenic cultures of Entamoeba hystolitica. Thus, we evaluated if the MLIF intraperitoneal (i.p.) treatment prevented SM-induced acute lung injury. The peptide prevented SM without a parasiticidal effect, indicating that its protective effect was related to modifications in the immune response. Furthermore, peripheral CD8+ leukocytes and neutrophil proportions were higher in infected treated mice. However, the treatment prevented DAD, CD8+ cell infiltration into the pulmonary tissue and downregulated IFNγ. Moreover, VCAM-1 expression was abrogated. These results indicate that the MLIF treatment downregulated adhesion molecule expression, impeding cell migration and proinflammatory cytokine tissular production, preventing acute lung injury induced by SM. Our findings represent a potential novel strategy to avoid this complication in various events where a dysregulated immune response triggers lung injury.
Collapse
Affiliation(s)
- Martha Jackeline Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Manuel Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Raúl Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN-Siglo XXI, IMSS, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Lv M, Zhu Q, Li X, Deng S, Guo Y, Mao J, Zhang Y. Network pharmacology and molecular docking-based analysis of protective mechanism of MLIF in ischemic stroke. Front Cardiovasc Med 2022; 9:1071533. [PMID: 36465453 PMCID: PMC9715769 DOI: 10.3389/fcvm.2022.1071533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the potential mechanism by which Monocyte locomotion inhibitory factor (MLIF) improves the outcome of ischemic stroke (IS) inflammatory injury. METHODS Potential MLIF-related targets were predicted using Swiss TargetPrediction and PharmMapper, while IS-related targets were found from GeneCards, PharmGKB, and Therapeutic Target Database (TTD). After obtaining the intersection from these two datasets, the Search Tool for Retrieval of Interacting Genes/Protein (STRING11.0) database was used to analyze the protein-protein interaction (PPI) network of the intersection and candidate genes for MLIF treatment of IS. The candidate genes were imported into the Metascape database for Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The top 20 core genes and the "MLIF-target-pathway" network were mapped using the Cytoscape3.9.1. Using AutoDock Vina1.1.2, the molecular docking validation of the hub targets and MLIF was carried out. In the experimental part, transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD) models were used to evaluate the protective efficacy of MLIF and the expression of inflammatory cytokines and the putative targets. RESULTS MLIF was expected to have an effect on 370 targets. When these targets were intersected with 1,289 targets for ischemic stroke, 119 candidate therapeutic targets were found. The key enriched pathways were PI3K-Akt signaling pathway and MAPK signaling pathway, etc. The GO analysis yielded 1,677 GO entries (P < 0.01), such as hormone stimulation, inflammatory response, etc. The top 20 core genes included AKT1, EGFR, IGF1, MAPK1, MAPK10, MAPK14, etc. The result of molecular docking demonstrated that MLIF had the strong binding capability to JNK (MAPK10). The in vitro and in vivo studies also confirmed that MLIF protected against IS by lowering JNK (MAPK10) and AP-1 levels and decreasing pro-inflammatory cytokines (IL-1, IL-6). CONCLUSION MLIF may exert a cerebral protective effect by inhibiting the inflammatory response through suppressing the JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Mengting Lv
- School of Medicine, Shanghai University, Shanghai, China
| | - Qiuzhen Zhu
- The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Shanshan Deng
- School of Medicine, Shanghai University, Shanghai, China
| | - Yuchen Guo
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Junqing Mao
- Department of Clinical Pharmacy, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Santos LC, Dos Anjos Cordeiro JM, Santana LDS, Barbosa EM, Santos BR, da Silva TQM, de Souza SS, Corrêa JMX, Lavor MSL, da Silva EB, Silva JF. Expression profile of the Kisspeptin/Kiss1r system and angiogenic and immunological mediators in the ovary of cyclic and pregnant cats. Domest Anim Endocrinol 2022; 78:106650. [PMID: 34399365 DOI: 10.1016/j.domaniend.2021.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/03/2022]
Abstract
The Kisspeptin/Kiss1r system has been studied in mammalian ovaries. However, there are still no studies on the modulation of this system and its relationship with angiogenic and immunological mediators in the ovary of domestic cats, especially during pregnancy. We evaluated the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators during folliculogenesis, luteogenesis and luteal regression of cyclic and pregnant cats. The ovary exhibited moderate to intense expression for Kiss1, VEGF, Flk-1, INFγ and MIF in oocytes and the follicular wall, while Kiss1r expression was low in granulosa cells. In these cells, there was also a greater expression of Kiss1, INFγ and MIF, mainly in secondary follicles, while tertiary and preovulatory follicles exhibited greater expression of VEGF and Flk-1 in this layer. In luteogenesis, Kiss1 immunostaining was higher in mature corpora lutea (MCL) of pregnant cats compared to vacuolated CL (VCL) and corpus albicans (CA). Pregnancy also increased the luteal gene expression of Kiss1 as well as Kiss1, Kiss1r, Flk-1, and MIF immunostaining in MCL, while reduced the area of VEGF expression in VCL and luteal mRNA expression of Mif when compared to non-pregnant animals. In addition, positive gene correlation between Kiss1r and Mif was observed in the CL. Kiss1, Kiss1r, Vegf and Mif expression were lower in the CA of cats in anestrus. These findings reveal that the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators, in the ovary of domestic cats, depend on the follicular and luteal stage, and the luteal expression of these mediators is influenced by pregnancy.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | | | - Larissa da Silva Santana
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Thayná Queiroz Menezes da Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Mário Sergio Lima Lavor
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Elisângela Barboza da Silva
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil.
| |
Collapse
|
4
|
Zhang Q, Dai J, Song Z, Guo Y, Deng S, Yu Y, Li T, Zhang Y. Anti-Inflammatory Dipeptide, a Metabolite from Ambioba Secretion, Protects Cerebral Ischemia Injury by Blocking Apoptosis Via p-JNK/Bax Pathway. Front Pharmacol 2021; 12:689007. [PMID: 34220513 PMCID: PMC8249563 DOI: 10.3389/fphar.2021.689007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 12/03/2022] Open
Abstract
MQ (l-methionyl-l-glutamic acid), anti-inflammatory dipeptide, is one of the metabolites of monocyte locomotion inhibitory factor, a thermostable pentapeptide secreted by Entamoeba histolytica. Monocyte locomotion inhibitory factor injection has been approved as an investigational drug for the potential neural protection in acute ischemic stroke. This study further investigated the neuroprotective effect of MQ in ischemic brain damage. Ischemia-reperfusion injury of the brain was induced in the rat model by middle cerebral artery occlusion. 2,3,5-triphenyltetrazolium chloride staining assay was used to measure cerebral infarction areas in rats. Laser Doppler measurement instrument was used to detect blood flow changes in the rat model. Nissl staining and NeuN staining were utilized to observe the numbers and structures of neuron cells, and the pathological changes in the brain tissues were examined by hematoxylin–eosin staining. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) staining was used to assess cell apoptosis. The changes in oxidative stress indexes, superoxide dismutase and malondialdehyde (MDA), were measured in serum. Methyl thiazolyl tetrazolium was used to measure the survival rates of PC12 cells. Flow cytometry assessed the apoptosis rates and the levels of reactive oxygen species. Real-time PCR was used to evaluate the mRNA expression levels, and Western blotting was used to analyze the changes in protein levels of p-JNK, Bax, cleaved Caspase3. We revealed that MQ improved neurobehavior, decreased cerebral infarction areas, altered blood flow volume, and the morphology of the cortex and hippocampus. On the other hand, it decreased the apoptosis of cortical neurons and the levels of MDA, and increased the levels of superoxide dismutase. In vitro studies demonstrated that MQ enhanced the cell survival rates and decreased the levels of reactive oxygen species. Compared to the oxygen-glucose deprivation/reperfusion group, the protein and mRNA expressions of p-JNK, Bax, cleaved Caspase3 was decreased significantly. These findings suggested that MQ exerts a neuroprotective effect in cerebral ischemia by blocking apoptosis via the p-JNK/Bax pathway.
Collapse
Affiliation(s)
- Qian Zhang
- School of Medicine, Shanghai University, Shanghai, China.,College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Jinwei Dai
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhibing Song
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Yuchen Guo
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Deng
- School of Medicine, Shanghai University, Shanghai, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China
| | - Tiejun Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Santos LC, Dos Anjos Cordeiro JM, da Silva Santana L, Santos BR, Barbosa EM, da Silva TQM, Corrêa JMX, Niella RV, Lavor MSL, da Silva EB, de Melo Ocarino N, Serakides R, Silva JF. Kisspeptin/Kiss1r system and angiogenic and immunological mediators at the maternal-fetal interface of domestic cats. Biol Reprod 2021; 105:217-231. [PMID: 33774655 DOI: 10.1093/biolre/ioab061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The Kisspeptin/Kiss1r system is a key regulator of reproduction by stimulating gonadotrophin-releasing hormone and luteinizing hormone release, and in vitro studies have shown that Kisspeptin can modulate angiogenesis and immune function, factors that are also essential for reproduction However, there are no studies on the expression of Kisspeptin/Kiss1r at the maternal-fetal interface in domestic cats and its relationship with angiogenic and immunological mediators. Thus, our objective was to evaluate the spatiotemporal expression profile of Kisspeptin/Kiss1r and angiogenic and immunological mediators in the uterus and placenta of domestic cats during pregnancy. Uterus and placenta samples were collected from cats in mid pregnancy (N = 6) and late pregnancy (N = 6), in addition to uterus from non-pregnant cats in diestrus (N = 7), to evaluate protein and gene expression of kisspeptin (Kiss1), kisspeptin receptor (Kiss1r), vascular endothelial growth factor (VEGF), tyrosine kinase receptor (Flk-1), placental growth factor (PLGF), interferon gamma (INFγ), migration inhibiting factor (MIF), tumor necrosis factor (TNFα), interleukins (IL6 and IL10) by immunohistochemistry and quantitative polymerase chain reaction. Pregnancy increased the uterine expression of Kiss1 and Kiss1r, especially at the late pregnancy, in addition to upregulating INFy, MIF, Vegf, Il10, and Tnf and downregulating Plgf. Higher placental expression of Kiss1r and Plgf mRNA occurred at the late pregnancy, while the expression of Kiss1, VEGF, Flk-1, INFy, TNFα, Il6, and IL10 was higher in the mid of pregnancy. A positive correlation between Kiss1 and Tnf was observed in the placenta, while Kiss1r had a negative correlation with Infγ, Il6, and Il10. The findings reveal that Kisspeptin/Kiss1r and angiogenic and immunological mediators at the maternal-fetal interface of pregnant cat have a gene correlation and are modulated by the gestational age. These data suggest possible functional links of Kisspeptin in placental angiogenesis and immunology.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Thayná Queiroz Menezes da Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Janaina Maria Xavier Corrêa
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raquel Viera Niella
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima Lavor
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Elisângela Barboza da Silva
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Natália de Melo Ocarino
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogéria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| |
Collapse
|
6
|
Höglund P. Dear readers of theScandinavian Journal of Immunologyand ECI 2018 attendees. Scand J Immunol 2018. [DOI: 10.1111/sji.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|