1
|
Missous G, Van Panhuys N. Circulating interleukin-33 levels in obesity and type 2 diabetes: a systematic review and meta-analysis. Am J Physiol Endocrinol Metab 2024; 327:E686-E699. [PMID: 39171751 PMCID: PMC11684861 DOI: 10.1152/ajpendo.00157.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Obesity and type 2 diabetes (T2D) are increasingly prevalent worldwide, and there is a critical need for novel interventions. Interleukin-33 (IL-33), an anti-inflammatory cytokine that regulates metabolism, is a promising biomarker for these conditions. The goal of this systematic review and meta-analysis is to examine the role of IL-33 in obesity and T2D, assessing its potential in predicting disease progression. A systematic search was performed on Scopus, Web of Science, and PubMed up until May 30, 2023. Each study was assessed for quality and sources of bias using the relevant critical appraisal checklists. Meta-analyses were conducted to compare IL-33 levels in individuals with obesity and T2D versus healthy controls (HC), and in obesity alone versus HC. Eighteen studies were included in the systematic review, and nine qualified for meta-analyses. The analyses showed insufficient evidence to suggest a significant difference in IL-33 levels between individuals with T2D and HC (mean difference, MD = -79.95, 95% CI [-241.38; 81.48]), with substantial heterogeneity across the studies observed (I2 = 97.1%, τ2 = 33,549.15). Similarly, there was insufficient evidence to suggest a significant difference between nondiabetic individuals with obesity and HC (MD = -7.31, 95% CI [-25.74; 11.13]), and heterogeneity was noted (I2 = 86.2%, τ2 = 342.45). There is insufficient evidence to indicate significant differences in IL-33 levels in individuals with T2D or obesity compared with HC. The results suggest a need for improved IL-33 measurement methods to reduce heterogeneity, enhancing understanding of the role of IL-33 in obesity and T2D, and informing future research and therapeutic strategies.NEW & NOTEWORTHY Our research finds an inconclusive relationship between IL-33 serum levels in individuals with type 2 diabetes (T2D) and nondiabetic individuals with obesity. In addition, we note a potential gender association with IL-33 serum levels. Further studies with larger cohorts are required to assess the significance of serum IL-33 in T2D and obesity. Urgent standardization is needed in IL-33 quantification and reporting methods for reliable comparisons.
Collapse
Affiliation(s)
- Ghalia Missous
- Laboratory of Immunoregulation, Disease Modelling and Therapeutics Department, Sidra Medicine, Doha, Qatar
| | - Nicholas Van Panhuys
- Laboratory of Immunoregulation, Disease Modelling and Therapeutics Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
2
|
Ouyang X, Reihill JA, Douglas LEJ, Martin SL. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur Respir Rev 2024; 33:230126. [PMID: 38657996 PMCID: PMC11040391 DOI: 10.1183/16000617.0126-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | |
Collapse
|
3
|
Taruselli MT, Qayum AA, Abebayehu D, Caslin HL, Dailey JM, Kotha A, Burchett JR, Kee SA, Maldonado TD, Ren B, Chao W, Zou L, Haque TT, Straus D, Ryan JJ. IL-33 Induces Cellular and Exosomal miR-146a Expression as a Feedback Inhibitor of Mast Cell Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1277-1286. [PMID: 38381001 PMCID: PMC10984763 DOI: 10.4049/jimmunol.2200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.
Collapse
Affiliation(s)
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L. Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jordan M. Dailey
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Aditya Kotha
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Jason R. Burchett
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Sydney A. Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Tania D. Maldonado
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, HSF2 G-S003B, 20 Penn Street, Baltimore, 21201
| | - Tamara T. Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - David Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
4
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
5
|
Menzella F, Munari S, Corsi L, Tonin S, Cestaro W, Ballarin A, Floriani A, Dartora C, Senna G. Tezepelumab: patient selection and place in therapy in severe asthma. J Int Med Res 2024; 52:3000605241246740. [PMID: 38676539 PMCID: PMC11056094 DOI: 10.1177/03000605241246740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Sara Munari
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Walter Cestaro
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Ariel Floriani
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona & AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
6
|
Singh H, Khurana A, Kumar A, Saluja R. Serum levels of interleukin-33, soluble ST2 and IgE in patients with asthma: a case-control study. J Asthma 2024; 61:48-57. [PMID: 37548422 DOI: 10.1080/02770903.2023.2244579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Interleukins play a very important role in the pathophysiology of asthma. Interleukin-33 (IL-33) is a partially explored cytokine in asthma. It binds with a specific receptor called suppression of tumorigenicity 2 (ST2). The study aims to evaluate the serum levels of IL-33, sST2 and IgE in asthmatic patients and healthy controls and its further association with the forced expiratory volume in one second (FEV 1%) and absolute eosinophil count. MATERIALS AND METHODS We enrolled 100 asthmatic patients and 57 healthy subjects for the study. We measured serum levels of IgE, IL-33, and sST2. Based on serum IgE levels, patients were divided into allergic and non-allergic groups. Statistical analysis was done by using Graph pad prism software 8. RESULTS We found significantly elevated levels of IL-33 and IgE in asthmatic patients as compared to healthy subjects. However, sST2 levels were significantly lower in asthmatic patients than in healthy subjects. FEV1% values were decreased in uncontrolled asthmatic patients. In addition, serum levels of IL-33 were significantly correlated with the IgE. Furthermore, we found a significant correlation between IL-33 and AEC in allergic asthmatic patients. CONCLUSION In this study, we reported elevated IL-33 and IgE levels and decreased sST2 levels in asthmatic patients compared to healthy controls. IL-33 and sST2 may act as inflammatory biomarkers for allergic diseases such as asthma.
Collapse
Affiliation(s)
- Himadri Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Alkesh Khurana
- Department of Pulmonary Medicine and TB, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Telangana, India
| |
Collapse
|
7
|
Dydak P, Sozańska B. Exposure to farm environment and its correlations with total IgE, IL-13, and IL-33 serum levels in patients with atopy and asthma. Allergol Immunopathol (Madr) 2023; 51:33-40. [PMID: 37695228 DOI: 10.15586/aei.v51i5.823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The aim of the study was to evaluate total immunoglobulin E (IgE), IL-13, and IL-33 serum level in people with bronchial asthma and atopy, and in healthy control group depending on their exposure to farm animals currently and in the first year of life. METHODS The study included 174 individuals living in rural areas and in a small town. Standardized questions from the International Study of Asthma and Allergy in Childhood and The European Community Respiratory Health Survey (ECRHS) questionnaires were used to define asthma. Atopic status was verified by skin prick tests. Rural exposure including contact with livestock was verified by adequate questionnaire. Total serum IgE, IL-13, and IL-33 levels were assessed by ELISA (enzyme-linked immunosorbent assay) tests. RESULTS Participants with atopy and bronchial asthma were characterized by high level of immunoglobulin E. Tendency to lower serum IgE level was observed among people reporting present contact with farm animals. Also, among those having contact with livestock in their first year of life, the analogous tendency was noticed. No difference in serum IL-13 levels in participants with asthma and atopy, and controls was observed, and there was no effect of exposure on farm animals on the concentration of IL-13. The highest IL-33 level was found in the atopic group, and the lowest in the control group. Participants currently exposed to farm animals were predisposed to have lower IL-33 serum level. CONCLUSION Exposure of farm animals currently and in first year of life may result in a lower level of total IgE. Correlation between IL-13 and IL-33 serum levels and contact with livestock was not confirmed.
Collapse
Affiliation(s)
- Paulina Dydak
- 1st Department of Pediatrics, Allergology and Cardiology, Wrocław Medical University, Wrocław, Poland;
| | - Barbara Sozańska
- 1st Department of Pediatrics, Allergology and Cardiology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
9
|
Zhao R, Shi Y, Liu N, Li B. Elevated levels of interleukin-33 are associated with asthma: A meta-analysis. Immun Inflamm Dis 2023; 11:e842. [PMID: 37102668 PMCID: PMC10116908 DOI: 10.1002/iid3.842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Previous studies reported that patients with asthma showed higher levels of interleukin (IL)-33 in peripheral blood, compared to healthy control (HCs). However, we also noticed that there were no significant differences of IL-33 levels between controls and asthma patients in a recent study. We aim to conduct this meta-analysis and evaluate the feasibility of IL-33 in peripheral blood that may act as a promising biomarker in asthma. METHODS Articles published before December 2022 were searched in these databases (PubMed, Web of Science, EMBASE, and Google Scholar). We used STATA 12.0 software to compute the results. RESULTS The study showed that asthmatics showed higher IL-33 level in serum and plasma, compared to HCs (serum: standard mean difference [SMD] 2.06, 95% confidence interval [CI] 1.12-3.00, I2 = 98.4%, p < .001; plasma: SMD 3.67, 95% CI 2.32-5.03, I2 = 86.0%, p < .001). Subgroup analysis indicated that asthma adults showed higher IL-33 level in serum, compared to HCs, whereas no significant difference in IL-33 level in serum was showed between asthma children and HCs (adults: SMD 2.17, 95% CI 1.09-3.25; children: SMD 1.81, 95% CI -0.11 to 3.74). The study indicated that moderate and severe asthmatics showed higher IL-33 level in serum, compared to mild asthmatics (SMD 0.78, 95% CI 0.41-1.16, I2 = 66.2%, p = .011). CONCLUSIONS In conclusion, the main findings of present meta-analysis suggested that there was a significant correlation between IL-33 levels and the severity of asthma. Therefore, IL-33 levels of either serum or plasma may be regarded as a useful biomarker of asthma or the degree of disease.
Collapse
Affiliation(s)
- Ranran Zhao
- Department of Respiratory MedicineCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| | - Yun Shi
- Medical and Health CenterCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| | - Na Liu
- Department of Respiratory MedicineBeijing Hepingli hospitalBeijingChina
| | - Bin Li
- Department of Respiratory MedicineCapital Medical University Affiliated Beijing Friendship HospitalBeijingChina
| |
Collapse
|
10
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
11
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
12
|
Radonjic-Hoesli S, Pavlov N, Simon HU, Simon D. Are blood cytokines reliable biomarkers of allergic disease diagnosis and treatment responses? J Allergy Clin Immunol 2022; 150:251-258. [DOI: 10.1016/j.jaci.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 10/16/2022]
|
13
|
Boberg E, Weidner J, Malmhäll C, Calvén J, Corciulo C, Rådinger M. Rapamycin Dampens Inflammatory Properties of Bone Marrow ILC2s in IL-33-Induced Eosinophilic Airway Inflammation. Front Immunol 2022; 13:915906. [PMID: 35720347 PMCID: PMC9203889 DOI: 10.3389/fimmu.2022.915906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The alarmin cytokine interleukin (IL)-33 plays an important proinflammatory role in type 2 immunity and can act on type 2 innate lymphoid cells (ILC2s) and type 2 T helper (TH2) cells in eosinophilic inflammation and asthma. The mechanistic target of rapamycin (mTOR) signaling pathway drives immune responses in several inflammatory diseases, but its role in regulating bone marrow responses to IL-33 is unclear. The aim of this study was to determine the role of the mTORC1 signaling pathway in IL-33-induced bone marrow ILC2 responses and its impact on IL-33-induced eosinophilia. Wild-type mice were intranasally exposed to IL-33 only or in combination with the mTORC1 inhibitor, rapamycin, intraperitoneally. Four groups were included in the study: saline-treated (PBS)+PBS, rapamycin+PBS, PBS+IL-33 and rapamycin+IL-33. Bronchoalveolar lavage fluid (BALF), serum and bone marrow cells were collected and analyzed by differential cell count, enzyme-linked immunosorbent assay and flow cytometry. IL-33 induced phosphorylation of the mTORC1 protein rpS6 in bone marrow ILC2s both ex vivo and in vivo. The observed mTOR signal was reduced by rapamycin treatment, indicating the sensitivity of bone marrow ILC2s to mTORC1 inhibition. IL-5 production by ILC2s was reduced in cultures treated with rapamycin before stimulation with IL-33 compared to IL-33 only. Bone marrow and airway eosinophils were reduced in mice given rapamycin before IL-33-exposure compared to mice given IL-33 only. Bone marrow ILC2s responded to IL-33 in vivo with increased mTORC1 activity and rapamycin treatment successfully decreased IL-33-induced eosinophilic inflammation, possibly by inhibition of IL-5-producing bone marrow ILC2s. These findings highlight the importance of investigating specific cells and proinflammatory pathways as potential drivers of inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Emma Boberg
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Corciulo
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Wu M, Zheng X, Huang J, Hu X. Association of IL33, IL1RL1, IL1RAP Polymorphisms and Asthma in Chinese Han Children. Front Cell Dev Biol 2022; 9:759542. [PMID: 34977013 PMCID: PMC8714920 DOI: 10.3389/fcell.2021.759542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Genome-wide association studies have identified interleukin 33 (IL33), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor accessory protein (IL1RAP) as asthma susceptibility loci in Europeans. IL33, IL1RL1, and IL1RAP constitute a ligand-receptor complex. Objective: We analyzed associations of asthma susceptibility, eosinophilic airway inflammation, and response to inhaled corticosteroid (ICS) with single nucleotide polymorphisms (SNPs) of 3 genes encoding IL33, IL1RL1, and its coreceptor IL1RAP in Chinese Han nationality children. Methods: A total of 153 non-asthmatic children and 265 asthmatic children who visited the Xiangya Hospital between September 2015 and August 2019 were recruited for this study. Pulmonary function tests, peripheral blood eosinophil counts (PBEC), and fractional exhaled nitric oxide (FeNO) tests were performed before treatment, and 3 months after treatment. Each participant’s DNA was extracted from the peripheral blood, and a Mass ARRAY system was used to genotype the SNPs. Results: The T allele of rs4742170 in IL33 was associated with a risk of higher FeNO at baseline, and no improvement in FeNO and airway hyperresponsiveness was found after ICS treatment. The A allele of rs10208293 and C allele of rs13424006 in IL1RL1 both were associated with lower susceptibility to asthma and lower FeNO. The TT genotype of rs1420101 and AA genotype of rs4142132 in IL1RL1 were associated with a greater probability of improvement in PBEC after ICS treatment. Conclusion: IL33-IL1RL1-IL1RAP complex polymorphisms are associated with childhood asthma susceptibility, eosinophilic airway inflammation, and ICS response in Chinese Han children in Hunan. We speculate that IL33-IL1RL1-IL1RAP complex polymorphisms affect the development of asthma, airway inflammation, and subsequent ICS response in childhood.
Collapse
Affiliation(s)
- Maolan Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Huang
- Department of Pediatrics, The First Hospital of Changsha, Changsha, China
| | - Xiaolei Hu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Pelaia C, Pelaia G, Longhini F, Crimi C, Calabrese C, Gallelli L, Sciacqua A, Vatrella A. Monoclonal Antibodies Targeting Alarmins: A New Perspective for Biological Therapies of Severe Asthma. Biomedicines 2021; 9:biomedicines9091108. [PMID: 34572294 PMCID: PMC8465735 DOI: 10.3390/biomedicines9091108] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Alarmins are innate cytokines, including thymic stromal lymphopoietin (TSLP), interleukin-33 (IL-33), and interleukin-25 (IL-25), which are mainly produced by airway epithelium and exert a prominent role in asthma pathobiology. In particular, several environmental factors such as allergens, cigarette smoking, airborne pollutants, and infectious agents trigger the release of alarmins, which in turn act as upstream activators of pro-inflammatory pathways underlying type 2 (T2-high) asthma. Indeed, alarmins directly activate group 2 innate lymphoid cells (ILC2), eosinophils, basophils, and mast cells and also stimulate dendritic cells to drive the commitment of naïve T helper (Th) cells towards the Th2 immunophenotype. Therefore, TSLP, IL-33, and IL-25 represent suitable targets for add-on therapies of severe asthma. Within this context, the fully human anti-TSLP monoclonal antibody tezepelumab has been evaluated in very promising randomized clinical trials. Tezepelumab and other anti-alarmins are thus likely to become, in the near future, valuable therapeutic options for the biological treatment of uncontrolled severe asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa-Località Germaneto, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0961-3647007; Fax: +39-0961-3647193
| | - Giulia Pelaia
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (F.L.); (A.S.)
| | - Federico Longhini
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (F.L.); (A.S.)
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy;
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Luca Gallelli
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa-Località Germaneto, 88100 Catanzaro, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.P.); (F.L.); (A.S.)
| | - Alessandro Vatrella
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Salerno, Italy;
| |
Collapse
|
16
|
The basic immunology of asthma. Cell 2021; 184:1469-1485. [PMID: 33711259 DOI: 10.1016/j.cell.2021.02.016] [Citation(s) in RCA: 518] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
In many asthmatics, chronic airway inflammation is driven by IL-4-, IL-5-, and IL-13-producing Th2 cells or ILC2s. Type 2 cytokines promote hallmark features of the disease such as eosinophilia, mucus hypersecretion, bronchial hyperresponsiveness (BHR), IgE production, and susceptibility to exacerbations. However, only half the asthmatics have this "type 2-high" signature, and "type 2-low" asthma is more associated with obesity, presence of neutrophils, and unresponsiveness to corticosteroids, the mainstay asthma therapy. Here, we review the underlying immunological basis of various asthma endotypes by discussing results obtained from animal studies as well as results generated in clinical studies targeting specific immune pathways.
Collapse
|
17
|
Porsbjerg CM, Sverrild A, Lloyd CM, Menzies-Gow AN, Bel EH. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur Respir J 2020; 56:2000260. [PMID: 32586879 PMCID: PMC7676874 DOI: 10.1183/13993003.00260-2020] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Monoclonal antibody therapies have significantly improved treatment outcomes for patients with severe asthma; however, a significant disease burden remains. Available biologic treatments, including anti-immunoglobulin (Ig)E, anti-interleukin (IL)-5, anti-IL-5Rα and anti-IL-4Rα, reduce exacerbation rates in study populations by approximately 50% only. Furthermore, there are currently no effective treatments for patients with severe, type 2-low asthma. Existing biologics target immunological pathways that are downstream in the type 2 inflammatory cascade, which may explain why exacerbations are only partly abrogated. For example, type 2 airway inflammation results from several inflammatory signals in addition to IL-5. Clinically, this can be observed in how fractional exhaled nitric oxide (F eNO), which is driven by IL-13, may remain unchanged during anti-IL-5 treatment despite reduction in eosinophils, and how eosinophils may remain unchanged during anti-IL-4Rα treatment despite reduction in F eNO The broad inflammatory response involving cytokines including IL-4, IL-5 and IL-13 that ultimately results in the classic features of exacerbations (eosinophilic inflammation, mucus production and bronchospasm) is initiated by release of "alarmins" thymic stromal lymphopoietin (TSLP), IL-33 and IL-25 from the airway epithelium in response to triggers. The central, upstream role of these epithelial cytokines has identified them as strong potential therapeutic targets to prevent exacerbations and improve lung function in patients with type 2-high and type 2-low asthma. This article describes the effects of alarmins and discusses the potential role of anti-alarmins in the context of existing biologics. Clinical phenotypes of patients who may benefit from these treatments are also discussed, including how biomarkers may help identify potential responders.
Collapse
Affiliation(s)
| | - Asger Sverrild
- Dept of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Elisabeth H Bel
- Dept of Respiratory Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jin HL, Zhan L, Mei SF, Shao ZY. Serum Cytokines and FeNO in School-Aged Children with Mycoplasma pneumoniae Pneumonia. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e923449. [PMID: 32564053 PMCID: PMC7328500 DOI: 10.12659/msm.923449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Mycoplasma pneumoniae is a major cause of community-acquired pneumonia (CAP) that is particularly prevalent in school-aged children. This study explored the potential involvement of cytokines in children with Mycoplasma pneumoniae pneumonia (MPP) infection. Material/Methods Children aged 3–7 years who were hospitalized due to CAP infection were enrolled and divided into 2 groups: an MPP group (n=33) and a NMPP group (n=38), along with 21 age-matched healthy controls. Clinical characteristics and laboratory data were recorded. Serum levels of IL-18, IL-33, IFN-γ, IL-5, IL-6, IL-8, and IL-13 were assessed using Luminex xMAP technology. Correlation analysis and ROC curves analysis were also performed to further explore the role of these detected cytokines in CAP. Results Compared with the healthy controls, the serum expression of IL-18, IL-33, IFN-γ, IL-5, IL-6, IL-8, and IL-13 were significantly higher in the MPP and NMPP groups. Furthermore, serum IL-18 expression was found to be significantly correlated with lgE, FeNO, IL-5, IL-8, and IL-13 concentrations. Significant differences were also observed between the MPP group and NMPP group patients in levels of IL-18, IL-5, and IL-6, and further ROC analysis showed that the area under the curve (AUC) of IL-18 and IL-5 were 0.813 (95% CI: 0.710–0.917; P<0.01) and 0.844 (95% CI: 0.756–0.933; P<0.01), respectively. Conclusions IL-18, IL-33, IFN-γ, IL-5, IL-6, IL-8, and IL-13 serum levels showed significant differences in children with CAP. IL-18 and IL-5 were much higher in the MPP group compared to the NMPP group patients, whereas IL-6 levels were significantly lower in these 2 groups.
Collapse
Affiliation(s)
- Hai-Li Jin
- Department of Pediatrics, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Lu Zhan
- Department of Pediatrics, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shu-Fen Mei
- Department of Pediatrics, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zheng-Yang Shao
- Department of Pediatrics, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Ketelaar ME, Portelli MA, Dijk FN, Shrine N, Faiz A, Vermeulen CJ, Xu CJ, Hankinson J, Bhaker S, Henry AP, Billington CK, Shaw DE, Johnson SR, Benest AV, Pang V, Bates DO, Pogson ZEK, Fogarty A, McKeever TM, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Niven R, Simpson A, Tobin MD, Hall IP, Wain LV, Blakey JD, Brightling CE, Obeidat M, Sin DD, Nickle DC, Bossé Y, Vonk JM, van den Berge M, Koppelman GH, Sayers I, Nawijn MC. Phenotypic and functional translation of IL33 genetics in asthma. J Allergy Clin Immunol 2020; 147:144-157. [PMID: 32442646 DOI: 10.1016/j.jaci.2020.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Asthma is a complex disease with multiple phenotypes that may differ in disease pathobiology and treatment response. IL33 single nucleotide polymorphisms (SNPs) have been reproducibly associated with asthma. IL33 levels are elevated in sputum and bronchial biopsies of patients with asthma. The functional consequences of IL33 asthma SNPs remain unknown. OBJECTIVE This study sought to determine whether IL33 SNPs associate with asthma-related phenotypes and with IL33 expression in lung or bronchial epithelium. This study investigated the effect of increased IL33 expression on human bronchial epithelial cell (HBEC) function. METHODS Association between IL33 SNPs (Chr9: 5,815,786-6,657,983) and asthma phenotypes (Lifelines/DAG [Dutch Asthma GWAS]/GASP [Genetics of Asthma Severity & Phenotypes] cohorts) and between SNPs and expression (lung tissue, bronchial brushes, HBECs) was done using regression modeling. Lentiviral overexpression was used to study IL33 effects on HBECs. RESULTS We found that 161 SNPs spanning the IL33 region associated with 1 or more asthma phenotypes after correction for multiple testing. We report a main independent signal tagged by rs992969 associating with blood eosinophil levels, asthma, and eosinophilic asthma. A second, independent signal tagged by rs4008366 presented modest association with eosinophilic asthma. Neither signal associated with FEV1, FEV1/forced vital capacity, atopy, and age of asthma onset. The 2 IL33 signals are expression quantitative loci in bronchial brushes and cultured HBECs, but not in lung tissue. IL33 overexpression in vitro resulted in reduced viability and reactive oxygen species-capturing of HBECs, without influencing epithelial cell count, metabolic activity, or barrier function. CONCLUSIONS We identify IL33 as an epithelial susceptibility gene for eosinophilia and asthma, provide mechanistic insight, and implicate targeting of the IL33 pathway specifically in eosinophilic asthma.
Collapse
Affiliation(s)
- Maria E Ketelaar
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.
| | - Michael A Portelli
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - F Nicole Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Leicester, United Kingdom
| | - Alen Faiz
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cornelis J Vermeulen
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cheng J Xu
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; CiiM & TWINCORE, Helmholtz-Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jenny Hankinson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Sangita Bhaker
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Amanda P Henry
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Charlote K Billington
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Dominick E Shaw
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, and COMPARE University of Birmingham and University of Nottingham, Nottingham, United Kingdom
| | - Vincent Pang
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, and COMPARE University of Birmingham and University of Nottingham, Nottingham, United Kingdom
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, and COMPARE University of Birmingham and University of Nottingham, Nottingham, United Kingdom
| | - Z E K Pogson
- Department of Respiratory Medicine, Lincoln County Hospital, Lincoln, United Kingdom; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Amisha Singapuri
- Institute for Lung Health, Department of Respiratory Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, United Kingdom
| | - Adel H Mansur
- Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, United Kingdom
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John W Holloway
- Human Development and Health, Faculty of Medicine and National Institute of Health Biomedical Research Centre, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Gabrielle A Lockett
- Human Development and Health, Faculty of Medicine and National Institute of Health Biomedical Research Centre, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Peter H Howarth
- Human Development and Health, Faculty of Medicine and National Institute of Health Biomedical Research Centre, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Robert Niven
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angela Simpson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Leicester, United Kingdom
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Leicester, United Kingdom
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Christopher E Brightling
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Leicester, United Kingdom; Institute for Lung Health, Department of Respiratory Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Ma'en Obeidat
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Nickle
- Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Mass
| | - Yohan Bossé
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|