1
|
León-Lara X, Pérez-Blanco U, Yamazaki-Nakashimada MA, Bustamante-Ogando JC, Aguilar-Gómez N, Cristerna-Tarrasa H, Staines-Boone AT, Saucedo-Ramírez OJ, Fregoso-Zuñiga E, Macías-Robles AP, Canseco-Raymundo MR, Venancio-Hernández M, Moctezuma-Trejo C, Gámez-González B, Zarate-Hernández C, Ramírez-Rivera R, Scheffler-Mendoza S, Jiménez-Polvo N, Hernández-Nieto L, Carmona-Vargas J, García-Cruz ML, Zavaleta-Martínez Ó, Román-Montes CM, Cervantes-Parra V, González-Reynoso A, Guzmán-Cotaya R, Espinosa-Rosales F, Saltigeral-Simental P, Espinosa-Padilla S, Blancas Galicia L. Description of BCG and Tuberculosis Disease in a Cohort of 79 Patients with Chronic Granulomatous Disease. J Clin Immunol 2024; 44:171. [PMID: 39102004 DOI: 10.1007/s10875-024-01778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by pathogenic variants of genes encoding the enzyme complex NADPH oxidase. In countries where tuberculosis (TB) is endemic and the Bacillus Calmette-Guérin (BCG) vaccine is routinely administered, mycobacteria are major disease-causing pathogens in CGD. However, information on the clinical evolution and treatment of mycobacterial diseases in patients with CGD is limited. The present study describes the adverse reactions to BCG and TB in Mexican patients with CGD. METHODS Patients with CGD who were evaluated at the Immunodeficiency Laboratory of the National Institute of Pediatrics between 2013 and 2024 were included. Medical records were reviewed to determine the clinical course and treatment of adverse reactions to BCG and TB disease. RESULTS A total of 79 patients with CGD were included in this study. Adverse reactions to BCG were reported in 55 (72%) of 76 patients who received the vaccine. Tuberculosis was diagnosed in 19 (24%) patients. Relapse was documented in three (10%) of 31 patients with BGC-osis and six (32%) of 19 patients with TB, despite antituberculosis treatment. There was no difference in the frequency of BCG and TB disease between patients with pathogenic variants of the X-linked CYBB gene versus recessive variants. CONCLUSIONS This report highlights the importance of considering TB in endemic areas and BCG complications in children with CGD to enable appropriate diagnostic and therapeutic approaches to improve prognosis and reduce the risk of relapse.
Collapse
Affiliation(s)
- Ximena León-Lara
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | - Uriel Pérez-Blanco
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Juan Carlos Bustamante-Ogando
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
- Department of Clinical Immunology, National Institute of Pediatrics, Mexico City, Mexico
| | - Nancy Aguilar-Gómez
- Department of Infectious Diseases, National Institute of Pediatrics, Mexico City, Mexico
| | | | | | | | - Eunice Fregoso-Zuñiga
- Department of Immunology, Children's Hospital of Morelia "Eva Sámano de López Mateos", Michoacan, Mexico
| | | | | | | | | | - Berenise Gámez-González
- Department of Allergy and Clinical Immunology, Chihuahua Pediatric Specialty Hospital, Chihuahua, Mexico
| | | | - Roselia Ramírez-Rivera
- Pediatrics Department, Specialty Hospital for Children and Women "Dr Felipe Nuñez Lara", Queretaro, Mexico
| | | | - Nancy Jiménez-Polvo
- Department of Immunology, Children's Hospital of Tlaxcala, Mexico, Tlaxcala, Mexico
| | | | - Jocelyn Carmona-Vargas
- Department of Infectious Diseases, Hospital for Children and Women of San Luis Potosí, San Luis Potosí, Mexico
| | | | | | - Carla M Román-Montes
- Clinical Microbiology Laboratory, INCMNSZ, Mexico City, Mexico
- Department of Infectious Diseases, INCMNSZ, Mexico City, Mexico
| | | | | | - Rogelio Guzmán-Cotaya
- Department of Pediatrics, General Hospital Agustín O' Horan, Mérida, Yucatan, Mexico
| | | | | | - Sara Espinosa-Padilla
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | | |
Collapse
|
2
|
Ülgü M, Yilmaz S, Öztaş D, Göktaş B, Akünal A. Prevalence of the hematopoietic rare genetic diseases in Türkiye: A retrospective study. Transfus Clin Biol 2024; 31:81-86. [PMID: 38218341 DOI: 10.1016/j.tracli.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Rare genetic diseases are an important global public health problem. At present there are defined approximately 8120 genetic diseases in 15,465 epidemiological datasets and 70% of them start in childhood. Hematopoiesis is the production of all cellular components of blood and continues throughout life. OBJECTIVE This study aims to present prevalence of hematopoietic rare genetic diseases recorden in Turkey. METHODS The population of study consist of 84.680.273 people who received healthcare from the Turkish National Health Service (49.9% female, 50.1% male). TNHS collects and records electronic data which relates with illness or health information of Turkish population since 2018. All healthcare facilities utilize the Personal Electronic Health Record System (PHR), aligning with standards outlined in the Turkish National Health Data Dictionary and the Health Coding Reference Server (HCRS) established by the Ministry of Health in 2007. The data dictionary comprises essential packages such as patient application and examination records. RESULTS Diagnosed female population (53.04%) were higher than male (46.96%). Data shows that most of the people with rare genetic diseases were diagnosed in Marmara Region. The overall prevalence of Hematopoietic Rare Genetic Diseases higher in the years of 2021 and 2022. CONCLUSION The prevalence increased gradually from 2018 to 2022. The consanguinity marriage seems to be the main problem which resulted higher rate of rare genetic diseases in Türkiye.
Collapse
Affiliation(s)
- Mahir Ülgü
- Turkish Ministry of Health, Ankara, Türkiye
| | - Serkan Yilmaz
- Ankara University Faculty of Nursing, Ankara, Türkiye.
| | - Duygu Öztaş
- Ankara University Faculty of Nursing, Ankara, Türkiye
| | - Bayram Göktaş
- Ankara University Faculty of Health Sciences, Ankara, Türkiye
| | | |
Collapse
|
3
|
Justiz-Vaillant AA, Williams-Persad AFA, Arozarena-Fundora R, Gopaul D, Soodeen S, Asin-Milan O, Thompson R, Unakal C, Akpaka PE. Chronic Granulomatous Disease (CGD): Commonly Associated Pathogens, Diagnosis and Treatment. Microorganisms 2023; 11:2233. [PMID: 37764077 PMCID: PMC10534792 DOI: 10.3390/microorganisms11092233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by a defect in the phagocytic function of the innate immune system owing to mutations in genes encoding the five subunits of the nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase enzyme complex. This review aimed to provide a comprehensive approach to the pathogens associated with chronic granulomatous disease (CGD) and its management. Patients with CGD, often children, have recurrent life-threatening infections and may develop infectious or inflammatory complications. The most common microorganisms observed in the patients with CGD are Staphylococcus aureus, Aspergillus spp., Candida spp., Nocardia spp., Burkholderia spp., Serratia spp., and Salmonella spp. Antibacterial prophylaxis with trimethoprim-sulfamethoxazole, antifungal prophylaxis usually with itraconazole, and interferon gamma immunotherapy have been successfully used in reducing infection in CGD. Haematopoietic stem cell transplantation (HCT) have been successfully proven to be the treatment of choice in patients with CGD.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Arlene Faye-Ann Williams-Persad
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | | | - Reinand Thompson
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago;
| |
Collapse
|
4
|
Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet 2021; 12:709315. [PMID: 34490039 PMCID: PMC8417537 DOI: 10.3389/fgene.2021.709315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual’s susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumayyah M Q Ahmed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
5
|
Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, Rawat A, Vignesh P, Madkaikar M, Stasia MJ, Bakri FG, de Boer M, Roesler J, Köker N, Köker MY, Jakobsen M, Bustamante J, Garcia-Morato MB, Shephard JLV, Cagdas D, Tezcan I, Sherkat R, Mortaz E, Fayezi A, Shahrooei M, Wolach B, Blancas-Galicia L, Kanegane H, Kawai T, Condino-Neto A, Vihinen M, Zerbe CS, Holland SM, Malech HL, Gallin JI, Kuhns DB. Hematologically important mutations: The autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis 2021; 92:102596. [PMID: 34547651 DOI: 10.1016/j.bcmd.2021.102596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe, recurrent bacterial and fungal infections. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is subsequently metabolized to hydrogen peroxide and other reactive oxygen species (ROS). These products are essential for intracellular killing of pathogens by phagocytic leukocytes (neutrophils, eosinophils, monocytes and macrophages). The leukocyte NADPH oxidase is composed of five subunits, four of which are encoded by autosomal genes. These are CYBA, encoding p22phox, NCF1, encoding p47phox, NCF2, encoding p67phox and NCF4, encoding p40phox. This article lists all mutations identified in these genes in CGD patients. In addition, cytochrome b558 chaperone-1 (CYBC1), recently recognized as an essential chaperone protein for the expression of the X-linked NADPH oxidase component gp91phox (also called Nox2), is encoded by the autosomal gene CYBC1. Mutations in this gene also lead to CGD. Finally, RAC2, a small GTPase of the Rho family, is needed for activation of the NADPH oxidase, and mutations in the RAC2 gene therefore also induce CGD-like symptoms. Mutations in these last two genes are also listed in this article.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Debra Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Manesha Madkaikar
- National Institute of Immunohaematology, ICMR, 13th Floor, KEM Hospital Campus, Mumbai, Parel 400012, India
| | - Marie José Stasia
- University Grenoble Alpes, CEA, CNRS, IBS, and Centre Hospitalier Universitaire Grenoble Alpes, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), 38000 Grenoble, France
| | - Faris Ghalib Bakri
- Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Martin de Boer
- Sanquin Research, and Karl Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Joachim Roesler
- Dept of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nezihe Köker
- Dept of Immunology, Erciyes University School of Medicine, Kayseri, Turkey; Dept of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - M Yavuz Köker
- Dept of Immunology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Marianne Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM, U550, and René Descartes University, Necker Medical School, Paris, France
| | - Maria Bravo Garcia-Morato
- Department of Immunology, La Paz University Hospital, IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | | | - Deniz Cagdas
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Section of Pediatric Immunology, 06100 Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Section of Pediatric Immunology, 06100 Ankara, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmaeil Mortaz
- Dept of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Fayezi
- Dept of Allergy and Clinical Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Ahvaz, Iran; Dept. of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Baruch Wolach
- Dept of Pediatrics and Laboratory for Leukocyte Function, Meir Medical Centre, Kfar Saba, Israel
| | | | - Hirokazu Kanegane
- Dept of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Antonio Condino-Neto
- Dept of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauno Vihinen
- Dept of Experimental Medical Science, Lund University, BMC B13, SE-22184 Lund, Sweden
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John I Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
6
|
Hematologically important mutations: X-linked chronic granulomatous disease (fourth update). Blood Cells Mol Dis 2021; 90:102587. [PMID: 34175765 DOI: 10.1016/j.bcmd.2021.102587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe bacterial and fungal infections. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide and subsequently formed other reactive oxygen species (ROS) are instrumental in killing phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients in Europe and in about 20% in countries with a high ratio of parental consanguinity. This article lists all mutations identified in CYBB and should therefore help in genetic counseling of X-CGD patients' families. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of disease-causing mutations. In addition, we also include some mutations in G6PD, the gene on the X chromosome that encodes glucose-6-phosphate dehydrogenase, because inactivity of this enzyme may lead to shortage of NADPH and thus to insufficient activity of NADPH oxidase. Severe G6PD deficiency can induce CGD-like symptoms.
Collapse
|
7
|
Disseminated Tuberculosis in a Patient with Autosomal Recessive p47 phox Chronic Granulomatous Disease. J Clin Immunol 2021; 41:1417-1419. [PMID: 34013431 DOI: 10.1007/s10875-021-01057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
|
8
|
Schejtman A, Vetharoy W, Choi U, Rivat C, Theobald N, Piras G, Leon-Rico D, Buckland K, Armenteros-Monterroso E, Benedetti S, Ashworth MT, Rothe M, Schambach A, Gaspar HB, Kang EM, Malech HL, Thrasher AJ, Santilli G. Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47 phox-Deficient Chronic Granulomatous Disease. Hum Gene Ther 2021; 32:949-958. [PMID: 33740872 PMCID: PMC8575060 DOI: 10.1089/hum.2020.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited blood disorder of phagocytic cells that renders patients susceptible to infections and inflammation. A recent clinical trial of lentiviral gene therapy for the most frequent form of CGD, X-linked, has demonstrated stable correction over time, with no adverse events related to the gene therapy procedure. We have recently developed a parallel lentiviral vector for p47phox-deficient CGD (p47phoxCGD), the second most common form of this disease. Using this vector, we have observed biochemical correction of CGD in a mouse model of the disease. In preparation for clinical trial approval, we have performed standardized preclinical studies following Good Laboratory Practice (GLP) principles, to assess the safety of the gene therapy procedure. We report no evidence of adverse events, including mutagenesis and tumorigenesis, in human hematopoietic stem cells transduced with the lentiviral vector. Biodistribution studies of transduced human CD34+ cells indicate that the homing properties or engraftment ability of the stem cells is not negatively affected. CD34+ cells derived from a p47phoxCGD patient were subjected to an optimized transduction protocol and transplanted into immunocompromised mice. After the procedure, patient-derived neutrophils resumed their function, suggesting that gene correction was successful. These studies pave the way to a first-in-man clinical trial of lentiviral gene therapy for the treatment of p47phoxCGD.
Collapse
Affiliation(s)
- Andrea Schejtman
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Winston Vetharoy
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine Rivat
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Narda Theobald
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Giuseppa Piras
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Diego Leon-Rico
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Karen Buckland
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Elena Armenteros-Monterroso
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sara Benedetti
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michael T Ashworth
- Department of Histopathology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | | | - Elizabeth M Kang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
9
|
Bakri FG, Mollin M, Beaumel S, Vigne B, Roux-Buisson N, Al-Wahadneh AM, Alzyoud RM, Hayajneh WA, Daoud AK, Shukair MEA, Karadshe MF, Sarhan MM, Al-Ramahi JAW, Fauré J, Rendu J, Stasia MJ. Second Report of Chronic Granulomatous Disease in Jordan: Clinical and Genetic Description of 31 Patients From 21 Different Families, Including Families From Lybia and Iraq. Front Immunol 2021; 12:639226. [PMID: 33746979 PMCID: PMC7973097 DOI: 10.3389/fimmu.2021.639226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic granulomatous Disease (CGD) is a rare innate immunodeficiency disorder caused by mutations in one of the six genes (CYBA, CYBB, NCF1, NCF2, NCF4, and CYBC1/EROS) encoding the superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH)—oxidase complex in phagocytes. In the Western population, the most prevalent form of CGD (about two-thirds of all cases) is the X-linked form (X-CGD) caused by mutations in CYBB. The autosomal recessive forms (AR-CGD), due to mutations in the other genes, collectively account for the remaining one-third of CGD cases. We investigated the clinical and molecular features of 22 Jordanian, 7 Libyan, and 2 Iraqi CGD patients from 21 different families. In addition, 11 sibling patients from these families were suspected to have been died from CGD as suggested by their familial and clinical history. All patients except 9 were children of consanguineous parents. Most of the patients suffered from AR-CGD, with mutations in CYBA, NCF1, and NCF2, encoding p22phox, p47phox, and p67phox proteins, respectively. AR-CGD was the most frequent form, in Jordan probably because consanguineous marriages are common in this country. Only one patient from non-consanguineous parents suffered from an X910 CGD subtype (0 indicates no protein expression). AR670 CGD and AR220 CGD appeared to be the most frequently found sub-types but also the most severe clinical forms compared to AR470 CGD. As a geographical clustering of 11 patients from eight Jordanian families exhibited the c.1171_1175delAAGCT mutation in NCF2, segregation analysis with nine polymorphic markers overlapping NCF2 indicates that a common ancestor has arisen ~1,075 years ago.
Collapse
Affiliation(s)
- Faris Ghalib Bakri
- Division of Infectious Diseases, Department of Medicine, Jordan University Hospital, Amman, Jordan.,Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Michelle Mollin
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Bénédicte Vigne
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Nathalie Roux-Buisson
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Raed Mohammed Alzyoud
- Division of Immunology, Department of Pediatrics, Queen Rani Children's Hospital, Amman, Jordan
| | - Wail Ahmad Hayajneh
- Division of Infectious Diseases, Department of Pediatrics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ammar Khaled Daoud
- Division of Immunology, Jordan University of Science & Technology, Irbid, Jordan
| | | | | | | | | | - Julien Fauré
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - John Rendu
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Marie Jose Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France.,Université Grenoble Alpes, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
10
|
Akar HT, Esenboga S, Cagdas D, Halacli SO, Ozbek B, van Leeuwen K, de Boer M, Tan CS, Köker Y, Roos D, Tezcan I. Clinical and Immunological Characteristics of 63 Patients with Chronic Granulomatous Disease: Hacettepe Experience. J Clin Immunol 2021; 41:992-1003. [PMID: 33629196 DOI: 10.1007/s10875-021-01002-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chronic granulomatous disease (CGD), one of the phagocytic system defects, is the primary immunodeficiency caused by dysfunction of the NADPH oxidase complex which generates reactive oxygen species (ROS), which are essential for killing pathogenic microorganisms, especially catalase-positive bacteria and fungi. OBJECTIVE The objective of our study was to assess the clinical and laboratory characteristics, treatment modalities, and prognosis of patients with CGD. METHODS We retrospectively reviewed 63 patients with CGD who have been diagnosed, treated, and/or followed-up between 1984 and 2018 in Hacettepe University, Ankara, in Turkey, as a developing country. RESULTS The number of female and male patients was 26/37. The median age at diagnosis was 3.8 (IQR: 1.0-9.6) years. The rate of consanguinity was 63.5%. The most common physical examination finding was lymphadenopathy (44/63), growth retardation (33/63), and hepatomegaly (27/63). One adult patient had squamous cell carcinoma of the lung. The most common infections were lung infection (53/63), skin abscess (43/63), and lymphadenitis (19/63). Of the 63 patients with CGD, 6 patients had inflammatory bowel disease (IBD). Twelve of the 63 patients died during follow-up. CYBA, NCF1, CYBB, and NCF2 mutations were detected in 35%, 27.5%, 25%, and 12.5% of the patients, respectively. CONCLUSION We identified 63 patients with CGD from a single center in Turkey. Unlike other cohort studies in Turkey, due to the high consanguineous marriage rate in our study group, AR form of CGD was more frequent, and gastrointestinal involvement were found at relatively lower rates. The rate of patients who treated with HSCT was lower in our research than in the literature. A majority of the patients in this study received conventional prophylactic therapies, which highlight on the outcome of individuals who have not undergone HSCT.
Collapse
Affiliation(s)
- Halil Tuna Akar
- Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100, Ankara, Turkey.
| | - Saliha Esenboga
- Faculty of Medicine, Department of Pediatrics, Division of Immunology, Hacettepe University, 06100, Ankara, Turkey
| | - Deniz Cagdas
- Faculty of Medicine, Department of Pediatrics, Division of Immunology, Hacettepe University, 06100, Ankara, Turkey
| | - Sevil Oskay Halacli
- Institute of Children's Health Basic Sciences of Pediatrics Division of Pediatric Immunology, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | - Begum Ozbek
- Institute of Children's Health Basic Sciences of Pediatrics Division of Pediatric Immunology, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin de Boer
- Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cagman Sun Tan
- Institute of Children's Health Basic Sciences of Pediatrics Division of Pediatric Immunology, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | - Yavuz Köker
- Faculty of Medicine, Department of Immunology, Erciyes University, Kayseri, Turkey
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilhan Tezcan
- Faculty of Medicine, Department of Pediatrics, Division of Immunology, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
11
|
Diagnostic Modalities Based on Flow Cytometry for Chronic Granulomatous Disease: A Multicenter Study in a Well-Defined Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3525-3534.e1. [DOI: 10.1016/j.jaip.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 11/18/2022]
|
12
|
Yanagimachi M, Kato K, Iguchi A, Sasaki K, Kiyotani C, Koh K, Koike T, Sano H, Shigemura T, Muramatsu H, Okada K, Inoue M, Tabuchi K, Nishimura T, Mizukami T, Nunoi H, Imai K, Kobayashi M, Morio T. Hematopoietic Cell Transplantation for Chronic Granulomatous Disease in Japan. Front Immunol 2020; 11:1617. [PMID: 32849547 PMCID: PMC7403177 DOI: 10.3389/fimmu.2020.01617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 12/05/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) is established as a curative treatment for severe chronic granulomatous disease (CGD). However, outcomes of HCT for CGD in Japan had not been precisely reported. We evaluated the outcome of HCT for CGD in Japan by means of a nationwide survey. A total of 91 patients (86 males and 5 females) with CGD who received HCT between 1992 and 2013 was investigated. Their median age at HCT was 11 years (0–39). Sixty-four patients had X-linked CGD caused by CYBB gene mutations, 13 had autosomal recessive CGD (7 CYBA and 6 NCF2), and 14 were genetically undetermined. Seventy patients are still alive at a median follow-up of 38.9 (3.7–230) months. Three-year OS and EFS was 73.7 and 67.6%, respectively. Twenty-one patients died mainly from transplant-related mortality. The cumulative incidence of grade II to IV acute GVHD and extensive chronic GVHD was 27.2 and 17.9%, respectively. Risk factors for EFS after HCT for CGD were age >30 years (P < 0.01), non-CYBB gene mutations (P < 0.01) and CBT (P < 0.01). Regarding the reduced intensity conditioning (RIC) regimen, risk factors for EFS included anti-thymocyte globulin (P = 0.048) and not using low-dose irradiation therapy (P < 0.01), in addition to the preceding risk factors. We report outcomes of HCT for CGD in Japan. Future studies are needed to improve such outcomes, especially for patients harboring non-CYBB gene mutations and suffering from adult CGD. A RIC regimen including low-dose irradiation may be a good option to explore further.
Collapse
Affiliation(s)
- Masakatsu Yanagimachi
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Koji Kato
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan.,Central Japan Cord Blood Bank, Seto, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Sasaki
- Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Chikako Kiyotani
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Hideki Sano
- Department of Pediatric Oncology, Fukushima Medical University Hospital, Fukushima, Japan
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Nagano, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Okada
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Masami Inoue
- Department of Pediatric Hematology/Oncology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Ken Tabuchi
- Division of Pediatrics, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Developmental and Urological-Reproductive Medicine Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomoyuki Mizukami
- Division of Pediatrics, Developmental and Urological-Reproductive Medicine Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Developmental and Urological-Reproductive Medicine Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Reis-Melo A, Espinheira MDC, Pinto-Pais I, Bonito Vitor A, Bustamante J, Trindade E. Perianal Disease and Granulomas: Think Out of the Box…. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2020; 27:119-123. [PMID: 32266309 PMCID: PMC7113594 DOI: 10.1159/000502358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/23/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a primary immunodeficiency due to a malfunction of NADPH oxidase. It is characterized by recurrent and severe infections caused by catalase-positive microorganisms and autoinflammatory manifestations. Recently, there has been described an NCF4 gene variant that causes a deficiency of p40phox, a subunit of NADPH oxidase. Patients with this deficiency appear to have a less severe clinical form as compared to classic CGD. CASE A 15-year-old girl with vulvar lichen planus since she was 2 years old and suspected Crohn's disease (CD) was first seen at our hospital. At the age of 12 years, she had been submitted to sacrococcygeal cyst exeresis, without cicatrization of the surgical wound and extension of the lesion to the perianal area. The diagnosis of CD was questioned, and the patient underwent an endoscopic and radiologic assessment, which was normal. A skin biopsy from the perianal area revealed a granuloma; thus, CD with isolated perianal disease was assumed. After several different treatments including antibiotics, infliximab, and adalimumab, the perianal lesion persisted, with no associated gastrointestinal symptoms. Therefore, the hypothesis of an immunodeficiency was considered. An immunologic and genetic study revealed reduced oxidative burst in the phorbol myristate acetate test, with diminished reactive oxygen species production and a homozygous mutation in the NCF4 gene. The adolescent started prophylactic trimethoprim-sulfamethoxazole and became asymptomatic. CONCLUSIONS The present case highlights that alternative diagnoses to CD must be considered in the presence of isolated perianal disease with granulomatous inflammation, especially when the disease is refractory to conventional CD therapy.
Collapse
Affiliation(s)
- Ana Reis-Melo
- Pediatric Gastroenterology Unit, Centro Hospitalar Universitário do São João, Porto, Portugal
- Biomedicine Department, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria do Céu Espinheira
- Pediatric Gastroenterology Unit, Centro Hospitalar Universitário do São João, Porto, Portugal
| | - Isabel Pinto-Pais
- Pediatric Gastroenterology Unit, Centro Hospitalar Universitário do São João, Porto, Portugal
| | - Artur Bonito Vitor
- Pediatric Primary Immunodeficiencies Unit, Centro Hospitalar Universitário do São João, Porto, Portugal
| | - Jacinta Bustamante
- Centre d'Etudes des Déficits Immunitaires, Hôpital Necker Enfants-Malades, Paris, France
| | - Eunice Trindade
- Pediatric Gastroenterology Unit, Centro Hospitalar Universitário do São João, Porto, Portugal
| |
Collapse
|
14
|
de Albuquerque JAT, Lima AM, de Oliveira Junior EB, Ishizuka EK, Aragão-Filho WC, Bengala Zurro N, Mayumi Chiba S, Fernandes FR, Condino-Neto A. A Novel Mutation in the NCF2 Gene in a CGD Patient With Chronic Recurrent Pneumopathy. Front Pediatr 2019; 7:391. [PMID: 31612120 PMCID: PMC6776604 DOI: 10.3389/fped.2019.00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited, genetically heterogeneous disease characterized by defective phagocytic cell microbicidal function, leading to increased susceptibility to bacterial and fungal infections. CGD is caused by mutations in components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, which is responsible for reactive oxygen species production during phagocytosis. Mutations in the neutrophil cytosolic factor 2 (NCF2) gene account for <5% of all cases. Here, we report a case of a 2-year-old female with persistent recurrent pneumopathy, even under trimethoprim-sulfamethoxazole (TMP-SMX) and itraconazole prophylaxis combined with IFNγ treatment. Genetic analysis revealed a novel homozygous mutation in NCF2, sequence depletion in a splicing region (c.256_257+2delAAGT NM_000433), leading to a K86Ifs*2 residue change in the p67-phox protein.
Collapse
Affiliation(s)
| | | | - Edgar Borges de Oliveira Junior
- Immunogenic Inc, São Paulo, Brazil.,PENSI Institute - Jose Luiz Egydio Setubal Foundation, Sabará Hospital, São Paulo, Brazil
| | | | | | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sônia Mayumi Chiba
- Sabará Hospital, São Paulo, Brazil.,Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|