1
|
Zheng Q, Wu X, Peng S. The immunotherapy mechanism of Hedyotis Diffusae Herba in treating liver cancer: a study based on network pharmacology, bioinformatics, and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:951-965. [PMID: 39093467 DOI: 10.1007/s00210-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Liver cancer is a malignant tumor that develops on or inside the liver. Hedyotis diffusa Willd (HDW) plays a significant role in anti-tumor activities; however, its mechanism against liver cancer remains unclear. This study aims to evaluate the immunotherapeutic mechanism of HDW in treating liver cancer through network pharmacology, bioinformatics analysis, and experimental validation. Network pharmacology was utilized to identify the active components and potential targets of HDW from the TCMSP database. A potential target protein-protein interaction (PPI) network was constructed using the STRING database, followed by function and pathway enrichment analysis of the targets using GO and KEGG methods. In addition, the key targets for HDW against liver cancer were identified using five different algorithms in Cytoscape. The TCGA and HPA databases were used to assess the mRNA and protein expression of core target genes in normal liver and liver cancer tissues and their relationship with overall survival in liver cancer, as well as their role in immune infiltration. Molecular docking between the core components of HDW and the core targets was performed using PyMOL software. The effects of HDW on the proliferation and apoptosis of liver cancer cells were examined using MTT and flow cytometry. The regulatory effects of the core component quercetin on core targets were validated using RT-qPCR and Western blot. A total of 163 potential targets were identified by searching for intersections among 7 types of active components and all potential and liver cancer targets. PPI network analysis revealed the core targets IL6 and TNF. GO enrichment analysis involved 2089 biological processes, 76 cellular components, and 196 molecular functions. KEGG enrichment analysis suggested that the anti-cancer effects of HDW might be mediated by the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, and NF-κB signaling pathway. Database validation of key targets showed that mRNA and protein expression results for the IL6 gene were contradictory, while those for the TNF gene were consistent, both being underexpressed in liver cancer. Importantly, the expression of IL6 and TNF was related to the infiltration of 24 types of immune cells, with the highest correlation with macrophages. Molecular docking showed that IL6 and TNF had high binding stability with quercetin, with binding energies of - 7.4 and - 6.0 kJ∙mol-1, respectively. Experimental validation showed that quercetin inhibited liver cancer cell proliferation and promoted apoptosis in a dose-dependent manner, with protein results indicating that quercetin downregulated the mRNA and protein expression of IL6 and TNF, and upregulated key proteins in the AGE-RAGE signaling pathway, AGEs, and RAGE. This study comprehensively elucidates the activity, potential targets, and molecular mechanisms of HDW against liver cancer, providing a promising strategy for the scientific basis and treatment mechanism of traditional Chinese medicine in treating liver cancer.
Collapse
Affiliation(s)
- Qingsheng Zheng
- Department of General Surgery, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 602 Ba Yi Qi Zhong Road, Taijiang District, Fuzhou, 350108, Fujian, China
| | - Xueying Wu
- Department of General Surgery, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 602 Ba Yi Qi Zhong Road, Taijiang District, Fuzhou, 350108, Fujian, China
| | - Shuai Peng
- Department of General Surgery, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 602 Ba Yi Qi Zhong Road, Taijiang District, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
2
|
Hou K, Xu X, Ge X, Jiang J, Ouyang F. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma. Biofactors 2024; 50:250-265. [PMID: 37921427 DOI: 10.1002/biof.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Immune checkpoints (ICPs) can promote tumor growth and prevent immunity-induced cancer cell apoptosis. Fortunately, targeting ICPs, such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4), has achieved great success in the past few years and has gradually become an effective treatment for cancers, including hepatocellular carcinoma (HCC). However, many patients do not respond to ICP therapy due to acquired resistance and recurrence. Therefore, clarifying the specific mechanisms of ICP in the development of HCC is very important for enhancing the efficacy of anti-PD-1 and anti-CTLA-4 therapy. In particular, antigen presentation and interferon-γ (IFN-γ) signaling were reported to be involved in the development of resistance. In this review, we have explained the role and regulatory mechanisms of ICP therapy in HCC pathology. Moreover, we have also elaborated on combinations of ICP inhibitors and other treatments to enhance the antitumor effect. Collectively, recent advances in the pharmacological targeting of ICPs provide insights for the development of a novel alternative treatment for HCC.
Collapse
Affiliation(s)
- Kai Hou
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiaohui Xu
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xin Ge
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Jiacen Jiang
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, PR China
| |
Collapse
|
3
|
Mei TTY, Aung HH, Tung WS, Naing C. Association between IL-10 gene polymorphisms (- 1082 A/G, -819 T/C, -592 A/C) and hepatocellular carcinoma: a meta-analysis and trial sequential analysis. BMC Cancer 2023; 23:842. [PMID: 37684564 PMCID: PMC10492326 DOI: 10.1186/s12885-023-11323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The carcinogenesis of hepatocellular carcinoma is complicated, and genetic factor may have the role in the malignant transformation of liver cells. IL-10 gene polymorphisms have been investigated for their potential roles in hepatocellular carcinoma This study aimed to investigate the relationship between polymorphisms of IL-10 (-1082 A/G, -819 T/C, -592 A/C), and hepatocellular carcinoma by performing a meta-analysis with eligible individual studies. METHODS This study followed the PRISMA 2020 Checklist. Relevant studies were searched in health-related databases. The Newcastle-Ottawa Scale criteria were used to evaluate the studies quality. Pooled odds ratio (OR) and its 95% confidence interval (CI) were used to determine the strength of association between each polymorphism and hepatocellular carcinoma using five genetic models. Stratification was done by ethnic groups. Trial sequential analysis (TSA) was performed to determine the required information size. RESULTS Fifteen case-control studies (n = 8182) were identified. Overall, the heterozygous model showed a marginal significant association only between IL-10 (-1082 A/G) and hepatocellular carcinoma risk (OR: 0.82, 95% CI: 0.67-1.00, 9 studies). On stratification, IL-10 (-1082 A/G) was significantly associated with hepatocellular carcinoma risk in the non-Asian population under dominant (OR: 0.62, 95% CI: 0.45-0.86, 4 studies), heterozygous (OR: 0.60, 95% CI: 0.43-0.85) and allelic models (OR: 0.79, 95% CI: 0.64-0.99). IL-10 (-819 T/C) was significantly associated with hepatocellular carcinoma risk only among non-Asians under the dominant (OR: 1.47, 95% CI: 1.02-2.13, 8 studies), recessive (OR: 1.99, 95% CI: 1.03-3.86, and homozygous models (OR: 2.18, 95% CI: 1.13-4.23). For IL-10 (-592 A/C) with 11 studies, there was no significant association with hepatocellular carcinoma in all five genetic models (P values > 0.5). TSA plots indicated that the information size for firm evidence of effect was sufficient only for the analysis of IL-10 (-592 A/C), but not for the - 1082 A/G or -819 T/C. CONCLUSIONS Findings suggest that IL-10 (-1082 A/G and - 819 T/C) polymorphisms are associated with hepatocellular carcinoma in ethnic-specific manner. However, this evidence is not conclusive because the sample size was insufficient. IL-10 (-592 A/C) polymorphism was not associated with hepatocellular carcinoma albeit with sufficient information size. Future well-designed large case-control studies on IL-10 (-1082 A/G and - 819 T/C) with different ethnicities are recommended.
Collapse
Affiliation(s)
- Teresa Tan Yen Mei
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Htar Htar Aung
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Wong Siew Tung
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Cho Naing
- Faculty of Tropical Health and Medicine, James Cook University, Queensland, Australia
| |
Collapse
|
4
|
Angulo-Aguado M, Orjuela-Amarillo S, Mora-Jácome JF, Córdoba LP, Gallego-Ortiz A, Gaviria-Sabogal CC, Contreras N, Figueroa C, Ortega-Recalde O, Morel A, Fonseca-Mendoza DJ. Functional analysis of CTLA4 promoter variant and its possible implication in colorectal cancer immunotherapy. Front Med (Lausanne) 2023; 10:1160368. [PMID: 37601778 PMCID: PMC10436101 DOI: 10.3389/fmed.2023.1160368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent cancer, ranking as the third most common. Recent advances in our understanding of the molecular causes of this disease have highlighted the crucial role of tumor immune evasion in its initiation and progression. CTLA4, a receptor that acts as a negative regulator of T cell responses, plays a pivotal role in this process, and genetic variations in CTLA4 have been linked to CRC susceptibility, prognosis, and response to therapy. Methods We conducted a case-control study involving 98 CRC patients and 424 controls. We genotyped the CTLA4 c.-319C > T variant (rs5742909) and performed an association analysis by comparing allele frequencies between the patients and controls. To assess the potential functional impact of this variant, we first performed an In Silico analysis of transcription factor binding sites using Genomatix. Finally, to validate our findings, we conducted a luciferase reporter gene assay using different cell lines and an electrophoretic mobility shift assay (EMSA). Results The case-control association analysis revealed a significant association between CTLA4 c.-319C > T and CRC susceptibility (p = 0.023; OR 1.89; 95% CI = 1.11-3.23). Genomatix analysis identified LEF1 and TCF7 transcription factors as specific binders to CTLA4 c.-319C. The reporter gene assay demonstrated notable differences in luciferase activity between the c.-319 C and T alleles in COS-7, HCT116, and Jurkat cell lines. EMSA analysis showed differences in TCF7 interaction with the CTLA4 C and T alleles. Conclusion CTLA4 c.-319C > T is associated with CRC susceptibility. Based on our functional validation results, we proposed that CTLA4 c.-319C > T alters gene expression at the transcriptional level, triggering a stronger negative regulation of T-cells and immune tumoral evasion.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Sarah Orjuela-Amarillo
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Julián Francisco Mora-Jácome
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Lea Paloma Córdoba
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Antonio Gallego-Ortiz
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Cristian Camilo Gaviria-Sabogal
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Nora Contreras
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Carlos Figueroa
- Departamento de Coloproctología, Hospital Universitario Mayor-Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Adrien Morel
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| |
Collapse
|
5
|
Metformin modulate immune fitness in hepatocellular carcinoma: Molecular and cellular approach. Int Immunopharmacol 2022; 109:108889. [DOI: 10.1016/j.intimp.2022.108889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022]
|
6
|
Zhang Z, Li JW, Zeng PH, Gao WH, Tian XF. Data Mining and Systems Pharmacology to Elucidate Effectiveness and Mechanisms of Chinese Medicine in Treating Primary Liver Cancer. Chin J Integr Med 2021; 28:636-643. [PMID: 34432201 DOI: 10.1007/s11655-021-3449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify specific Chinese medicines (CM) that may benefit patients with primary liver cancer (PLC), and to explore the mechanism of action of these medicines. METHODS In this retrospective, singlecenter study, prescription information from PLC patients was used in combination with Traditional Chinese Medicine Inheritance Supports System to identify the specific core drugs. A system pharmacology approach was employed to explore the mechanism of action of these medicines. RESULTS Taking CM more than 6 months was significantly associated with improved survival outcomes. In total, 77 putative targets and 116 bioactive ingredients of the core drugs were identified and included in the analysis (P<0.05). A total of 1,036 gene ontology terms were found to be enriched in PLC. A total of 75 pathways identified from Kyoto Encyclopedia of Genes and Genomes were also enriched in this disease, including fluid shear stress, interleukin-17 signaling, signaling between advanced glycan end products and their receptors, cellular senescence, tumor necrosis factor signaling, p53 signaling, cell cycle signaling, steroid hormone biosynthesis, T-helper 17 cell differentiation, and metabolism of xenobiotics by cytochrome. Docking studies suggested that the ingredients in the core drugs exert therapeutic effects in PLC by modulating c-Jun and interleukin-6. CONCLUSIONS Receiving CM for 6 months or more improves survival for the patients with PLC. The core drugs that really benefit for PLC patients likely regulates the tumor microenvironment and tumor itself.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun-Wei Li
- Department of Pharmacy, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province, 518020, China
| | - Pu-Hua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, China
| | - Wen-Hui Gao
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xue-Fei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Wagner M, Jasek M, Karabon L. Immune Checkpoint Molecules-Inherited Variations as Markers for Cancer Risk. Front Immunol 2021; 11:606721. [PMID: 33519815 PMCID: PMC7840570 DOI: 10.3389/fimmu.2020.606721] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, immunotherapy has been revolutionized by a new approach that works by blocking receptors called immune checkpoints (IC). These molecules play a key role in maintaining immune homeostasis, mainly by suppressing the immune response and by preventing its overactivation. Since inhibition of the immune response by IC can be used by cancer to avoid recognition and destruction by immune system, blocking them enhances the anti-tumor response. This therapeutic approach has brought spectacular clinical effects. The ICs present heterogeneous expression patterns on immune cells, which may affect the effectiveness of immunotherapy. The inherited genetic variants in regulatory regions of ICs genes can be considered as potential factors responsible for observed inter-individual differences in ICs expression levels on immune cells. Additionally, polymorphism located in exons may introduce changes to ICs amino acid sequences with potential impact on functional properties of these molecules. Since genetic variants may affect both expression and structure of ICs, they are considered as risk factors of cancer development. Inherited genetic markers such as SNPs may also be useful in stratification patients into groups which will benefit from particular immunotherapy. In this review, we have comprehensively summarized the current understanding of the relationship between inherited variations of CTLA-4, PDCD1, PD-L1, BTLA, TIM-3, and LAG-3 genes in order to select SNPs which can be used as predictive biomarkers in personalized evaluation of cancer risk development and outcomes as well as possible response to immunotherapy.
Collapse
Affiliation(s)
| | - Monika Jasek
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|
8
|
Zhu X, Cheng Y, Wu F, Sun H, Zheng W, Jiang W, Shi J, Ma S, Cao H. MFAP2 Promotes the Proliferation of Cancer Cells and Is Associated With a Poor Prognosis in Hepatocellular Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820977524. [PMID: 33280519 PMCID: PMC7724263 DOI: 10.1177/1533033820977524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Backgrounds: Microfibril-associated protein 2 (MFAP2) is an extracellular matrix protein
that regulates the function of microfibrils by interacting with fibrillin.
MFAP2 has been reported to play an important role in metabolic diseases and
has been shown to be significantly overexpressed in head and neck squamous
cell carcinoma and Hepatocellular carcinoma (HCC). However, the molecular
function and prognostic value of MFAP2 have never been reported in HCC or
other tumors. Methods: In the present study, expression characteristics of MFAP2 in HCC, its
influence on the development of HCC, as well as its function and potential
mechanism in HCC were verified by Quantitative reverse
transcription-polymerase chain reaction, bioinformatics data mining and in
vitro cell experiments. Results: MFAP2 was prominently high-expressed in HCC and associated with cancer
stages. HCC patients with higher MFAP2 expression displayed lower overall
survival (OS) and disease-specific survival(DSS), while there was no
significant difference in recurrence-free survival (RFS). In vitro
experiments showed that downregulation of MFAP2 inhibited proliferation,
migration level of HCC cells. Transcription factors, DNA methyltransferases,
immune factors may interact with MFAP2 mRNA to promote tumor progression in
HCC. Conclusion: These findings suggest that MFAP2 may play a key role in the development of
HCC. Therefore, MFAP2 may be a valuable prognostic marker and an effective
anticancer target in HCC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, The East District of Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Haoyao Sun
- Department of Radio-Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shijie Ma
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Nanjing, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|