1
|
Buttar PA, Mazhar MU, Khan JZ, Jamil M, Abid M, Tipu MK. Saccharomyces boulardii (CNCM I-745) ameliorates Ovalbumin-induced atopic dermatitis by modulating the NF-κB signaling in skin and colon. Arch Dermatol Res 2025; 317:500. [PMID: 40009233 DOI: 10.1007/s00403-025-04057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Atopic dermatitis (AD) is a long-lasting allergic disorder characterized by itching, redness, swelling, dry skin, scaling, inflammation, and tissue damage. The exact cause of AD is still unknown. Steroid medications are frequently utilized in treating AD, but their prolonged use can result in complications. Multiple studies suggest probiotics may regulate the immune system, boost immune functionality, or reduce overactive immune responses. The current study investigated the anti-inflammatory, antioxidant, and immunomodulatory role of Saccharomyces boulardii in Ovalbumin (OVA)-induced AD in a murine model. Balb/c mice were sensitized and challenged with OVA to induce AD-like lesions. S. boulardii 1 × 109 CFU/ml/day/mice was orally administrated either as a pretreatment (administered 7 days before OVA induction and continued till day 28) or concurrent treatment (administered from day 1 and continued till day 28). Dexamethasone (5 mg/kg/day) was used as a standard treatment. S. boulardii alleviated the macroscopic and behavioral changes. Blood inflammatory cells were significantly reduced. Serum IgE levels were decreased. Oxidative stress and histopathological changes (epidermal/dermal thickness, inflammatory cells, collagen deposition) in skin tissue were improved. Similarly, the colon's antioxidant capacity and histological architecture were also maintained. Expression of proinflammatory cytokines like TNF-⍺ and IL-1β were significantly reduced in skin and colon tissue. The probiotic S. boulardii under study reduced inflammation by downregulating NF-κB signaling in both skin and colon tissue. This study provides a basis for a possible gut-skin axis, which can be targeted to relieve AD symptoms.
Collapse
Affiliation(s)
- Parveen Akhtar Buttar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maryam Jamil
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Abid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Qi Y, Ma G. Comprehensive bioinformatic analysis reveals a fibroblast-related gene signature for the diagnosis of keloids. Heliyon 2024; 10:e35011. [PMID: 39157347 PMCID: PMC11327581 DOI: 10.1016/j.heliyon.2024.e35011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Aim A keloid is a fibroproliferative cutaneous disorder secondary to skin injury, caused by an imbalance in fibroblast proliferation and apoptosis. However, the pathogenesis is not fully understood. In this study, candidate genes for keloid were identified and used to construct a diagnostic model. Methods Three datasets related to keloids were downloaded from NCBI Gene Expression Omnibus. Fibroblast-related genes were screened, and fibroblast scores for the samples were determined. Then, a weighted gene co-expression network analysis (WGCNA) was used to identify modules and genes associated with keloids and the fibroblast score. Differentially expressed genes (DEGs) between keloid and control samples were identified and compared with fibroblast-related genes and genes in the modules. Overlapping genes were evaluated using functional enrichment analyses. Signature genes were further screened, and a diagnostic model was constructed. Finally, correlations between immune cell frequences and signature genes were analyzed. Results In total, 124 fibroblast-related genes were obtained, and the fibroblast score was an effective indicator of the sample type. WGCNA revealed five modules that were significantly correlated with both the disease state and fibroblast scores, including 1760 genes. Additionally, 589 DEGs were identified, including 16 that overlapped with fibroblast-related genes and genes identified in the WGCNA. These genes were related to cell proliferation and apoptosis and were involved in FoxO, Rap1, p53, Ras, MAPK, and PI3K-Akt pathways. Finally, a six fibroblast-related gene signature (CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1) was identified and used for diagnostic model construction. The proportions of regulatory T cells and macrophages were significantly higher in keloid tissues than in controls. Conclusion The established model based on CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1 showed good performance and may be useful for keloid diagnosis.
Collapse
Affiliation(s)
- Yue Qi
- Plastic Surgery Hospital Chinese Academy of Medical Sciences, 33rd BaDaChu Street, Beijing, 100144, China
| | - GuiE Ma
- Plastic Surgery Hospital Chinese Academy of Medical Sciences, 33rd BaDaChu Street, Beijing, 100144, China
| |
Collapse
|
3
|
Hu X, Zhou Y, Shi J, Qi M, Li X, Yang Y, Zhu C, Wang C, Tang Z, Ma Y, Yu G. Osthole relieves skin damage and inhibits chronic itch through modulation of Akt/ZO-3 pathway in atopic dermatitis. Eur J Pharmacol 2023; 947:175649. [PMID: 36921706 DOI: 10.1016/j.ejphar.2023.175649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Atopic dermatitis (AD) is the most prevalent chronic inflammatory skin condition and significantly reduces quality of life. Tight junction (TJ), which is located directly beneath the stratum corneum, maintains skin barrier function and aids in the identification of the cell's "territory". We evaluated seventeen TJ related genes to explore AD related alterations of TJ. Remarkably, we found that the expression of ZO-3, a gene that had not been linked to the development of TJ in AD, was significantly down-regulated in the skin of AD mice and patients. siRNA mediated knock-down of ZO-3 significantly decreased transepithelial electrical resistance in HaCaT cells, demonstrating that ZO-3 is essential to epidermal barrier function. In addition to ZO-3 downregulation, protein kinase B (Akt) phosphorylation was increased in the skin of AD mice. We further confirmed an inverse relationship between Akt phosphorylation and ZO-3 expression in AD using HaCaT cells and mouse model. Finally, we tested the efficacy of osthole as a treatment for AD in mice and HaCaT cells. Osthole inhibits Akt phosphorylation, and thereby enhances ZO-3 expression in mouse models of AD, resulting in greatly lessened AD associated skin damage and chronic itch, and osthole also increased the expression of ZO-3 in HaCaT cells by inhibiting the phosphorylation of Akt. Together, we established that ZO-3 is essential for the development of TJ in AD skin and HaCaT cells, and our findings provide fresh support for osthole's ability to protect ZO-3 expression and the epidermal barrier in AD.
Collapse
Affiliation(s)
- Xueqin Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianxin Shi
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingxin Qi
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Li
- Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changming Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxiang Ma
- School of Life Science, China Pharmaceutical University, Nanjing, China.
| | - Guang Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Españo E, Kim J, Kim JK. Utilization of Aloe Compounds in Combatting Viral Diseases. Pharmaceuticals (Basel) 2022; 15:ph15050599. [PMID: 35631425 PMCID: PMC9145703 DOI: 10.3390/ph15050599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plants contain underutilized resources of compounds that can be employed to combat viral diseases. Aloe vera (L.) Burm. f. (syn. Aloe barbadensis Mill.) has a long history of use in traditional medicine, and A. vera extracts have been reported to possess a huge breadth of pharmacological activities. Here, we discuss the potential of A. vera compounds as antivirals and immunomodulators for the treatment of viral diseases. In particular, we highlight the use of aloe emodin and acemannan as lead compounds that should be considered for further development in the management and prevention of viral diseases. Given the immunomodulatory capacity of A. vera compounds, especially those found in Aloe gel, we also put forward the idea that these compounds should be considered as adjuvants for viral vaccines. Lastly, we present some of the current limitations to the clinical applications of compounds from Aloe, especially from A. vera.
Collapse
|
5
|
Yao XW, Liu HD, Ren MX, Li TL, Jiang WK, Zhou Z, Liu ZY, Yang M. Aloe polysaccharide promotes osteogenesis potential of adipose-derived stromal cells via BMP-2/Smads and prevents ovariectomized-induced osteoporosis. Mol Biol Rep 2022; 49:11913-11924. [PMID: 36243792 PMCID: PMC9712288 DOI: 10.1007/s11033-022-08003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Aloe polysaccharide (AP) is a type of an active macromolecule of Aloe vera, which contributes to its function. However, whether AP possesses anti-osteoporosis properties is unknown. METHODS Adipose-derived stromal cells were treated with different concentrations of AP. Early and late osteogenesis were, respectively, evaluated by ALP and Alizarin Red S staining. The effect of AP on the processes of adipogenesis inhibition in ADSCs was analyzed by oil red O staining. Western blot was used to assess the expression of osteogenic and adipogenic related factors. Then, Noggin was administered to further confirm the mechanism by which AP promotes the osteogenesis of ADSCs. Finally, 40 female SD rats were classified into a bilateral laparotomy group (Sham group) and three bilateral ovariectomy groups: OVX group, OVX + AP group, and OVX + AP + Noggin group. The bilateral rat femurs were collected to perform micro-CT scanning, HE, Masson trichrome, and Oil red O staining. RESULTS The results indicated that AP could increase ALP expression and calcium deposition. Through molecular mechanisms, AP promotes the protein expression of COL1A1, OPN, and ALP in ADSCs, but downregulates the expression of PPARγ. Also, AP directs ADSCs' fate by stimulating the BMP2/Smads signaling pathway. In vivo, the rat AP-treated had more trabecular bone than the OVX rat, indicating partial protection from cancellous bone loss after treatment with AP. CONCLUSION Our results show that AP may promote osteogenesis of ADSCs through BMP-2/Smads signaling pathway and inhibits lipogenic differentiation. Thus, AP might be a promising alternative medicine to treat postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xue-wei Yao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - He-dong Liu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - Mao-xian Ren
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - Tian-lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - Wen-kai Jiang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - Zhi Zhou
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - Zhi-yi Liu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No.2, Zheshan Xi Road, Wuhu, 241001 Anhui People’s Republic of China
| |
Collapse
|
6
|
Le Phan TH, Park SY, Jung HJ, Kim MW, Cho E, Shim KS, Shin E, Yoon JH, Maeng HJ, Kang JH, Oh SH. The Role of Processed Aloe vera Gel in Intestinal Tight Junction: An In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms22126515. [PMID: 34204534 PMCID: PMC8235210 DOI: 10.3390/ijms22126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5–400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 μg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.
Collapse
Affiliation(s)
- Thu Han Le Phan
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (M.W.K.)
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Min Woo Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (M.W.K.)
| | - Eunae Cho
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Kyu-Suk Shim
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Eunju Shin
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Jin-Ha Yoon
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
- Correspondence: (J.-H.K.); (S.H.O.); Tel./Fax: +82-32-820-4929 (S.H.O.)
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
- Correspondence: (J.-H.K.); (S.H.O.); Tel./Fax: +82-32-820-4929 (S.H.O.)
| |
Collapse
|
7
|
Gilhar A, Reich K, Keren A, Kabashima K, Steinhoff M, Paus R. Mouse models of atopic dermatitis: a critical reappraisal. Exp Dermatol 2021; 30:319-336. [PMID: 33368555 DOI: 10.1111/exd.14270] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Mouse models for atopic dermatitis (AD) are an indispensable preclinical research tool for testing new candidate AD therapeutics and for interrogating AD pathobiology in vivo. In this Viewpoint, we delineate why, unfortunately, none of the currently available so-called "AD" mouse models satisfactorily reflect the clinical complexity of human AD, but imitate more "allergic" or "irriant" contact dermatitis conditions. This limits the predictive value of AD models for clinical outcomes of new tested candidate AD therapeutics and the instructiveness of mouse models for human AD pathophysiology research. Here, we propose to initiate a rational debate on the minimal criteria that a mouse model should meet in order to be considered relevant for human AD. We suggest that valid AD models should at least meet the following criteria: (a) an AD-like epidermal barrier defect with reduced filaggrin expression along with hyperproliferation, hyperplasia; (b) increased epidermal expression of thymic stromal lymphopoietin (TSLP), periostin and/or chemokines such as TARC (CCL17); (c) a characteristic dermal immune cell infiltrate with overexpression of some key cytokines such as IL-4, IL-13, IL-31 and IL-33; (d) distinctive "neurodermatitis" features (sensory skin hyperinnervation, defective beta-adrenergic signalling, neurogenic skin inflammation and triggering or aggravation of AD-like skin lesions by perceived stress); and (e) response of experimentally induced skin lesions to standard AD therapy. Finally, we delineate why humanized AD mouse models (human skin xenotransplants on SCID mice) offer a particularly promising preclinical research alternative to the currently available "AD" mouse models.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - Kristian Reich
- Centre for Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Skinflammation Center, Hamburg, Germany
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Qatar University, Doha, Qatar.,School of Medicine, Weill Cornell University-Qatar and Qatar University, Doha, Qatar
| | - Ralf Paus
- Dr. Phillip Frost, Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
8
|
Li QS, Wang YQ, Liang YR, Lu JL. The anti-allergic potential of tea: a review of its components, mechanisms and risks. Food Funct 2020; 12:57-69. [PMID: 33241826 DOI: 10.1039/d0fo02091e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Qing-Sheng Li
- Tea Research Institute, Zhejiang University, China. and Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, China.
| | | | | |
Collapse
|