1
|
Di Donato M, Cristiani CM, Capone M, Garofalo C, Madonna G, Passacatini LC, Ottaviano M, Ascierto PA, Auricchio F, Carbone E, Migliaccio A, Castoria G. Role of the androgen receptor in melanoma aggressiveness. Cell Death Dis 2025; 16:34. [PMID: 39837817 PMCID: PMC11751086 DOI: 10.1038/s41419-025-07350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Malignant melanoma represents the fifth most common cancer in the world and its incidence is rising. Novel therapies targeting receptor tyrosine kinases, kinases and immune checkpoints have been employed with a significant improvement of the overall survival and long-term disease containment. Nevertheless, the disease often progresses and becomes resistant to the therapies. As such, the discovery of new targets and drugs for advanced melanoma still remains a difficult task. Gender disparities, with a female advantage in melanoma incidence and outcome, have been reported. Although emerging studies support the pro-tumorigenic role of androgen/androgen receptor axis in melanoma, the molecular bases of such evidence are still under intense investigation. We now report that ligand activation of the androgen receptor drives melanoma invasiveness and its escape from natural killer-mediated cytotoxic effect. By combining different experimental approaches, we observe that melanoma escape is mediated by the androgen-triggered shedding of the surface molecule MICA. Specific blockade of ADAM10 or androgen receptor impairs the androgen-induced MICA shedding and melanoma immune-escape. Further, the increase in MICA serum levels correlates with a poor outcome in melanoma patients treated with the anti-PD-1 monoclonal antibody, pembrolizumab. At last, melanoma cells depleted of the androgen receptor become more responsive to the most commonly used immunocheckpoint inhibitors, suggesting that the receptor dampens the immunotherapy efficacy. Taken together, our findings identify the androgen receptor as a diagnostic guidance in melanoma and support the repositioning of AR blockers in clinical management of patients.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences - 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Mariaelena Capone
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Gabriele Madonna
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | | | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Ferdinando Auricchio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Ennio Carbone
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
2
|
Passacatini LC, Ilari S, Nucera S, Scarano F, Macrì R, Caminiti R, Serra M, Oppedisano F, Maiuolo J, Palma E, Malafoglia V, Tomino C, Fini M, Mollace V, Muscoli C. Multiple Aspects of Irritable Bowel Syndrome and the Role of the Immune System: An Overview of Systematic Reviews with a Focus on Polyphenols. Int J Mol Sci 2024; 25:11993. [PMID: 39596064 PMCID: PMC11593788 DOI: 10.3390/ijms252211993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a complex and often debilitating condition that significantly impacts the gastrointestinal system and the overall quality of life of those affected. IBS is characterized by a variety of distressing symptoms, including cramping, abdominal pain, and irregular bowel movements, underlined by an intricate interplay of immune system dysfunction in its pathology. Numerous studies highlight an increased cellular immune response, with elevated levels of proinflammatory cytokines, mucosal alterations due to immune imbalance, and visceral hypersensitivity. Notably, studies indicate increased levels of proinflammatory cytokines, immune imbalances that lead to mucosal changes, and heightened visceral sensitivity. The roles of effector and regulatory T cells are particularly intriguing, as their modification appears to amplify inflammation and may even contribute to autoimmune disorders. This overview of systematic reviews explores the connections between IBS and immune responses, with a focus on immune cell alterations and proliferation of lymphocytes and mast cells in affected individuals. Furthermore, we explore various aspects of IBS management, including its pharmacological approaches. A systematic search of PubMed and Web of Science yielded 676 articles, which were ultimately narrowed down to 9 key studies that met our inclusion criteria. These studies collectively underscore the activation of the immune system with the degranulation of the mast cells in patients with IBS, where the release of inflammatory mediators can compromise intestinal permeability, exacerbating symptoms further. Additionally, we examine the multifaceted management strategies for IBS, emphasizing the potential therapeutic benefits of dietary polyphenols as antioxidants. The present study aims to enhance our understanding of IBS and offer insights into more effective treatment strategies for this challenging condition.
Collapse
Affiliation(s)
| | - Sara Ilari
- IRCCS San Raffaele Roma, 00166 Rome, Italy; (L.C.P.); (V.M.); (C.T.); (M.F.)
| | - Saverio Nucera
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Maria Serra
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Francesca Oppedisano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | | | - Carlo Tomino
- IRCCS San Raffaele Roma, 00166 Rome, Italy; (L.C.P.); (V.M.); (C.T.); (M.F.)
| | - Massimo Fini
- IRCCS San Raffaele Roma, 00166 Rome, Italy; (L.C.P.); (V.M.); (C.T.); (M.F.)
| | - Vincenzo Mollace
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Carolina Muscoli
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (M.S.); (F.O.); (J.M.); (E.P.); (V.M.)
| |
Collapse
|
3
|
Lou J, Xiang Z, Zhu X, Fan Y, Li J, Jin G, Cui S, Huang N, Le X. A two-step, two-sample Mendelian randomization analysis investigating the interplay between gut microbiota, immune cells, and melanoma skin cancer. Medicine (Baltimore) 2024; 103:e40432. [PMID: 39533622 PMCID: PMC11557063 DOI: 10.1097/md.0000000000040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to rigorously explore the potential causal relationships among gut microbiota (GM), immune cells, and melanoma skin cancer among participants from Europe, where this disease exhibits significant prevalence and profound societal impact. Using the genome-wide association analysis database, a double-sample Mendelian randomization (MR) analysis was drawn upon to investigate GM, immune cells, and melanoma skin cancer. The inverse variance weighted approach was applied to estimate the causal connections among these variables. A two-step MR analysis was employed to quantitatively gauge the impact of immune cells mediated GM on melanoma skin cancer. To address potential sources of bias, such as pleiotropy and heterogeneity, multiple analytical techniques were integrated. The MR analysis pinpointed 6 GM taxa related to either an augmented or declined risk of late-stage melanoma skin cancer. In the same vein, 32 immune cell phenotypes were noticed as correlates with modified risk of melanoma skin cancer. Our study also implies that the probable association between GM and melanoma could be facilitated by 5 immune cell phenotypes. The findings of our study underline certain GM taxa and immune cells as potential influencers on the onset and development of melanoma skin cancer. Importantly, our results spotlight 5 immune cell phenotypes as potential agents mediating this association.
Collapse
Affiliation(s)
- Jiaqi Lou
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Ziyi Xiang
- Department of Psychiatry and Psychotherapy, Section of Medical Psychology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Xiaoyu Zhu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Youfen Fan
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Jiliang Li
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Guoying Jin
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Shengyong Cui
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Neng Huang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Xin Le
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
4
|
Imširović V, Wensveen FM, Polić B, Jelenčić V. Maintaining the Balance: Regulation of NK Cell Activity. Cells 2024; 13:1464. [PMID: 39273034 PMCID: PMC11393908 DOI: 10.3390/cells13171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Natural Killer (NK) cells, integral components of the innate immune system, play a crucial role in the protection against intracellular threats. Their cytotoxic power requires that activation is tightly controlled, and in this, they take a unique position within the immune system. Rather than depending on the engagement of a single activating receptor, their activation involves a delicate balance between inhibitory and activating signals mediated through an array of surface molecules. Only when this cumulative balance surpasses a specific threshold do NK cells initiate their activity. Remarkably, the activation threshold of NK cells remains robust even when cells express vastly different repertoires of inhibitory and activating receptors. These threshold values seem to be influenced by NK cell interactions with their environment during development and after release from the bone marrow. Understanding how NK cells integrate this intricate pattern of stimuli is an ongoing area of research, particularly relevant for cellular therapies seeking to harness the anti-cancer potential of these cells by modifying surface receptor expression. In this review, we will explore some of the current dogmas regarding NK cell activation and discuss recent literature addressing advances in our understanding of this field.
Collapse
Affiliation(s)
| | | | | | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Mao J, Chen L, Qian S, Wang Y, Zhao B, Zhao Q, Lu B, Mao X, Zhai P, Zhang Y, Zhang L, Sun X. Transcriptome network analysis of inflammation and fibrosis in keloids. J Dermatol Sci 2024; 113:62-73. [PMID: 38242738 DOI: 10.1016/j.jdermsci.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Keloid (KL) is a common benign skin tumor. KL is typically characterized by significant fibrosis and an intensive inflammatory response. Therefore, a comprehensive understanding of the interactions between cellular inflammation and fibrotic cells is essential to elucidate the mechanisms driving the progression of KL and to develop therapeutics. OBJECTIVE Investigate the transcriptome landscape of inflammation and fibrosis in keloid scars. METHODS In this paper, we performed transcriptome sequencing and microRNA (miRNA) sequencing on unselected live cells from six human keloid tissues and normal skin tissues to elucidate a comprehensive transcriptome landscape. In addition, we used single-cell RNA sequencing (scRNA-seq) analysis to analyze intercellular communication networks and enrich fibroblast populations in two additional keloid and normal skin samples to study fibroblast diversity. RESULTS By RNA sequencing and a miRNA-mRNA-PPI network analysis, we identified miR-615-5p and miR-122b-3p as possible miRNAs associated with keloids, as they differed most significantly in keloids. Similarly, COL3A1, COL1A2, THBS2, TNC, IGTA, THBS4, TGFB3 as genes with significant differences in keloid may be associated with keloid development. Using single-cell RNA sequencing data from 24,086 cells collected from normal or keloid, we report reconstructed intercellular signaling network analysis and aggregation to modules associated with specific cell subpopulations at the cellular level for keloid alterations. CONCLUSIONS Our multitranscriptomic dataset delineates inflammatory and fibro heterogeneity of human keloids, underlining the importance of intercellular crosstalk between inflammatory cells and fibro cells and revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhuan Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binfan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Garofalo C, Cerantonio A, Muscoli C, Mollace V, Viglietto G, De Marco C, Cristiani CM. Helper Innate Lymphoid Cells-Unappreciated Players in Melanoma Therapy. Cancers (Basel) 2023; 15:cancers15030933. [PMID: 36765891 PMCID: PMC9913873 DOI: 10.3390/cancers15030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) and targeted therapy have dramatically changed the outcome of metastatic melanoma patients. Although immune checkpoints were developed based on the biology of adaptive T cells, they have subsequently been shown to be expressed by other subsets of immune cells. Similarly, the immunomodulatory properties of targeted therapy have been studied primarily with respect to T lymphocytes, but other subsets of immune cells could be affected. Innate lymphoid cells (ILCs) are considered the innate counterpart of T lymphocytes and include cytotoxic natural killer cells, as well as three helper subsets, ILC1, ILC2 and ILC3. Thanks to their tissue distribution and their ability to respond rapidly to environmental stimuli, ILCs play a central role in shaping immunity. While the role of NK cells in melanoma physiopathology and therapy is well established, little is known about the other helper ILC subsets. In this review, we summarize recent findings on the ability of the melanoma TME to influence the phenotype and functional plasticity of helper ILCs and highlight how this subset may in turn shape the TME. We also discuss changes in the melanoma TME induced by targeted therapy that could affect helper ILC functions, the expression of immune checkpoints on this subset and how their inhibition by ICIs may modulate helper ILC function and contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Cerantonio
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
8
|
Tietze JK. [Tumor-infiltrating natural killer and T cells in melanoma]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:929-936. [PMID: 36401123 DOI: 10.1007/s00105-022-05076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Melanoma is a highly immunogenic cancer with an increased infiltration of lymphocytes (TIL). TIL are a very heterogeneous population which consists among others of CD8+ T cells, CD4+ T cells, regulatory T cells, B cells, and natural killer (NK) cells and may differ highly between melanoma patients. Distribution, concentration, phenotype, and activation status of the infiltrating lymphocytes vary greatly and impact the prognosis. Different subpopulations of CD8+ T cells, CD4+ T cells, and NK cells have been identified and have been associated with both the course of the disease and the therapeutic response to different therapies. Increased knowledge of the different functions, interactions, activation, and possibilities of actively influencing relevant subgroups may lead to novel, innovative, and promising therapeutic options.
Collapse
Affiliation(s)
- Julia K Tietze
- Klinik und Poliklinik für Dermatologie und Allergologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland.
| |
Collapse
|
9
|
Höglund P. SJI
50 years: Immunosurveillance in the brain and our highest impact factor ever. Scand J Immunol 2022. [DOI: 10.1111/sji.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM) Karolinska Institutet Stockholm Sweden
| |
Collapse
|
10
|
Cristiani CM, Capone M, Garofalo C, Madonna G, Mallardo D, Tuffanelli M, Vanella V, Greco M, Foti DP, Viglietto G, Ascierto PA, Spits H, Carbone E. Altered Frequencies and Functions of Innate Lymphoid Cells in Melanoma Patients Are Modulated by Immune Checkpoints Inhibitors. Front Immunol 2022; 13:811131. [PMID: 35173725 PMCID: PMC8841353 DOI: 10.3389/fimmu.2022.811131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
Monoclonal antibodies targeting immune checkpoints improved clinical outcome of patients with malignant melanoma. However, the mechanisms are not fully elucidated. Since immune check-point receptors are also expressed by helper innate lymphoid cells (ILCs), we investigated the capability of immune checkpoints inhibitors to modulate ILCs in metastatic melanoma patients as well as melanoma cells effects on ILC functions. Here, we demonstrated that, compared to healthy donors, patients showed a higher frequency of total peripheral ILCs, lower percentages of CD117+ ILC2s and CD117+ ILCs as well as higher frequencies of CD117- ILCs. Functionally, melanoma patients also displayed an impaired TNFα secretion by CD117- ILCs and CD117+ ILCs. Nivolumab therapy reduced the frequency of total peripheral ILCs but increased the percentage of CD117- ILC2s and enhanced the capability of ILC2s and CD117+ ILCs to secrete IL-13 and TNFα, respectively. Before Nivolumab therapy, high CCL2 serum levels were associated with longer Overall Survival and Progression Free Survival. After two months of treatment, CD117- ILC2s frequency as well as serum concentrations of IL-6, CXCL8 and VEGF negatively correlated with both the parameters. Moreover, melanoma cells boosted TNFα production in all ILC subsets and increased the number of IL-13 producing ILC2s in vitro. Our work shows for the first time that PD-1 blockade is able to affect ILCs proportions and functions in melanoma patients and that a specific subpopulation is associated with the therapy response.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- *Correspondence: Costanza Maria Cristiani, ; Paolo Antonio Ascierto,
| | - Mariaelena Capone
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | | | - Vito Vanella
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Marta Greco
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Paolo Antonio Ascierto
- Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
- *Correspondence: Costanza Maria Cristiani, ; Paolo Antonio Ascierto,
| | - Hergen Spits
- Department of Experimental Immunology, University Medical Centres (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
11
|
Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021; 11:754541. [PMID: 34712615 PMCID: PMC8547654 DOI: 10.3389/fonc.2021.754541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
12
|
Potts MA, McDonald JA, Sutherland KD, Herold MJ. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. Eur J Immunol 2020; 50:1871-1884. [PMID: 33202035 DOI: 10.1002/eji.202048712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
The mutational landscape of human cancers is highly complex. While next generation sequencing aims to comprehensively catalogue somatic alterations in tumor cells, it fails to delineate driver from passenger mutations. Functional genomic approaches, particularly CRISPR/Cas9, enable both gene discovery, and annotation of gene function. Indeed, recent CRISPR/Cas9 technologies have flourished with the development of more sophisticated and versatile platforms capable of gene knockouts to high throughput genome wide editing of a single nucleotide base. With new platforms constantly emerging, it can be challenging to navigate what CRISPR tools are available and how they can be effectively applied to understand cancer biology. This review provides an overview of current and emerging CRISPR technologies and their power to model cancer and identify novel treatments. Specifically, how CRISPR screening approaches have been exploited to enhance immunotherapies through the identification of tumor intrinsic and extrinsic mechanisms to escape immune recognition will be discussed.
Collapse
Affiliation(s)
- Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jackson A McDonald
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kate D Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Shirley SA, Lundberg CG, Heller R. Electrotransfer of IL-15/IL-15Rα Complex for the Treatment of Established Melanoma. Cancers (Basel) 2020; 12:cancers12103072. [PMID: 33096755 PMCID: PMC7589551 DOI: 10.3390/cancers12103072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary The stimulation of the immune system through the administration of immunomodulatory agents such as cytokines has the potential to be an effective anti-cancer therapy. Obtaining the correct dose is an important aspect with respect to minimizing toxicity and obtaining the desired effect. A method to decrease the toxicity of this type of treatment is to replace the high-dose recombinant protein injections by using DNA expressing genes for one or more of these anti-cancer agents. In this current study, we have evaluated the delivery of interleukin-15 and its receptor in the form of plasmid DNA in a mouse melanoma model. We utilize a delivery approach that can deliver plasmid DNA in a manner that results in the desired level of expression being produced and induces a potent anti-tumor response as well as an immune memory response. Abstract Gene electrotransfer (GET) is a safe, reliable, and effective method of delivering plasmid DNA (pDNA) to solid tumors. GET has been previously used to deliver interleukin-15 (IL-15) to mouse melanoma, resulting in long-term tumor regression and the survival of a percentage of treated animals after challenge. To enhance this effect, we evaluated modulating the expression levels of IL-15 and co-expressing its receptor, IL-15Rα. GET was used to deliver plasmids encoding IL-15 and IL-15Rα to established B16.F10 tumors on days 0, 4, and 7. Two delivery protocols that yielded different expression profiles were utilized. Mice that were tumor-free for 50 days were then challenged with B16.F10 cells on the opposite flank and monitored for an additional 50 days. The amount of IL-15 expressed and the presence or absence of IL-15Rα in the treated tumors did not significantly affect the tumor regression and long-term survival. Upon challenge, however, low levels of IL-15 were more protective and resulted in a greater production of anti-tumor cytokines such as IFN-γ and MIP-1β and a greater amount of CD11b+ and CD3e+ cells infiltrating tumors. While mice with high levels of IL-15 showed CD11b+ and CD3e+ cell infiltrate, there was a substantial presence of NK cells that was absent in other treated groups. We can conclude that the level of IL-15 expressed in tumors after GET is an important determinant of the therapeutic outcome, a finding that will help us finetune this type of therapy.
Collapse
Affiliation(s)
- Shawna A. Shirley
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (S.A.S.); (C.G.L.)
| | - Cathryn G. Lundberg
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (S.A.S.); (C.G.L.)
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (S.A.S.); (C.G.L.)
- Department of Medical Engineering, University of South Florida, Tampa, FL 33512, USA
- Correspondence: ; Tel.: +01-813-974-1221
| |
Collapse
|
14
|
Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020; 92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.
Collapse
Affiliation(s)
- Emmanuelle Benard
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|