1
|
Xie J, Xie N, Liu C, Huang Z, Du M, Hu H, Zheng K, Peng J, Li R. Ureaplasma urealyticum GrpE protein elicits glycolysis-mediated inflammatory responses through TLR2 in macrophages. Immunobiology 2025; 230:152902. [PMID: 40273504 DOI: 10.1016/j.imbio.2025.152902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
The pathogenesis of Ureaplasma urealyticum infection is linked to the host inflammatory response; however, the specific molecular mechanisms underlying this phenomenon have not been fully elucidated. GrpE is a chaperonin that accelerates ADP release and ATP binding to DnaK, thereby enhancing the chaperone function of the HSP70 system under stress. However, alternative activities such as pro-inflammatory responses remain poorly understood. In this study, we report that the U. urealyticum GrpE exerts as a cytokine-inducing virulence factor toward macrophages. Using gene-knockout mice and specific inhibitors, we found that GrpE-induced pro-inflammatory cytokine expression was mediated by the TLR2/STAT3 pathway. We also found that glycolysis was essential for this pro-inflammatory response. Mechanistically, GrpE treatment stimulated STAT3-dependent accumulation of citric acid and acetyl-CoA, promoting histone acetylation and potent pro-inflammatory responses. Our results indicate that glycolysis plays a role in the inflammatory response induced by GrpE through the TLR2/STAT3 pathway and contributes to the glycolysis-mediated inflammatory response, offering a fresh understanding of the development of U. urealyticum infection.
Collapse
Affiliation(s)
- Jing Xie
- Department of Obstetrics, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Nan Xie
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Chang Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Zhemin Huang
- Department of Obstetrics, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Min Du
- Department of Obstetrics, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Hao Hu
- Department of Obstetrics, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China; Department of Clinical Laboratory, Affiliated Hengyang Hospital of Hunan Normal University and Hengyang Central Hospital, Hengyang 421001, Hunan, China
| | - Jiaofeng Peng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Hunan Normal University and Hengyang Central Hospital, Hengyang 421001, Hunan, China.
| | - Ranhui Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-like receptor 9 is altered during persistence. Infect Immun 2024; 92:e0006324. [PMID: 38899879 PMCID: PMC11238561 DOI: 10.1128/iai.00063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA (gDNA). Previous bioinformatic studies have demonstrated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here, we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. Utilizing reporter cell lines, we demonstrate that purified gDNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion, exacerbated by the inhibition of lipooligosaccharide biosynthesis, and is significantly altered during the induction of aberrance/persistence. Our observations support the hypothesis that chlamydial gDNA is released during the conversion between the pathogen's replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly. Given that C. trachomatis inclusions do not co-localize with TLR9-containing vacuoles in the pro-monocytic cell line U937, our findings also hint that chlamydial gDNA is capable of egress from the inclusion, and traffics to TLR9-containing vacuoles via an as yet unknown pathway.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-Like Receptor 9 is altered during persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579186. [PMID: 38370826 PMCID: PMC10871208 DOI: 10.1101/2024.02.06.579186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA. Previous bioinformatic studies have indicated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. We confirm that hTLR9 colocalizes with chlamydial inclusions in the pro-monocytic cell line, U937. Utilizing HEK293 reporter cell lines, we demonstrate that purified genomic DNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in non-phagocytic HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion and exacerbated by the inhibition of lipooligosaccharide biosynthesis. The induction of aberrance / persistence also significantly alters Chlamydia-specific TLR9 signaling. Our observations support the hypothesis that chlamydial gDNA is released at appreciable levels by the bacterium during the conversion between its replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
| |
Collapse
|
4
|
Bovungana Q, Arumugam T, Ramsuran V. The association of host genes with specific sexually transmitted infections. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1124074. [PMID: 37937275 PMCID: PMC10627165 DOI: 10.3389/frph.2023.1124074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Sexually transmitted infections (STIs) are hazardous to human health worldwide. STIs have a direct influence on sexual and reproductive health and can increase the chances of HIV. Globally, more than 1 million STIs are acquired every day and the majority are asymptomatic. Approximately, 374 million cases of STIs have been reported annually. The most prevalent STIs include chlamydia, gonorrhoea, syphilis, and trichomoniasis. These STIs are caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum and Trichomonas vaginalis. The major factor that contributes to the susceptibility and prognosis of infectious diseases is genetic variation. Host genes play a huge role in STIs and immune response. The production of host factors is stimulated by a variety of bacteria, viruses and parasites and the host factors can play a role in increasing host vulnerability to infection and pathogen persistence. Genetic variation or polymorphisms within certain host genes can influence the course of pathogen infection and disease progression. Polymorphisms can contribute to changes in gene expression and or changes in the protein structure. which may either contribute to/or protect against infection. This review discusses the role of host genes in influencing the susceptibility of the most prevalent STIs caused by Chlamydia trachomatis, Trichomonas vaginalis, Treponema pallidum and Neisseria gonorrhoeae. We evaluate polymorphisms associated pathogen recognition signalling pathway of these diseases. These polymorphisms may be used as biomarkers to infer risk to specific STIs.
Collapse
Affiliation(s)
- Qhama Bovungana
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
da Costa AR, Barros JF, Lima VP, Magalhães C, Silva HKR, Deusdará R, de Souza Lapa J. Substance Use and Risky Sexual Behavior in the PrEP Outpatient Clinic at the University Hospital of Brasília. Trop Med Infect Dis 2023; 8:323. [PMID: 37368741 DOI: 10.3390/tropicalmed8060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: To evaluate the epidemiological profile of people who use drugs at the PrEP outpatient clinic of the University Hospital of Brasília; (2) Methods: Cross-sectional study with a review of data from medical records referring to the first medical consultation. The prevalence ratio was calculated using a Poisson regression model with robust variance; (3) Results: A total of 53% of subjects reported drug use in the last 3 months. The unadjusted prevalence ratio of drug use in trans women was PR: 9.0 (95%CI: 1.4-57.5). people who use drugs have a 1.9 times higher prevalence of STI diagnosis, and a 2.4 times higher prevalence of partners compared to non-users; (4) Conclusions: Substance use was associated with a higher STI prevalence ratio and number of sexual partners.
Collapse
Affiliation(s)
- Alan Rodrigues da Costa
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| | - Jônatas Ferreira Barros
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| | - Valéria Paes Lima
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| | - Camila Magalhães
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| | - Hellen Kássia Rezende Silva
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| | - Rodolfo Deusdará
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| | - Juliana de Souza Lapa
- Núcleo de Medicina Tropical, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília 70910-900, Brazil
| |
Collapse
|
6
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like Receptor Response to Human Immunodeficiency Virus Type 1 or Co-Infection with Hepatitis B or C Virus: An Overview. Int J Mol Sci 2023; 24:ijms24119624. [PMID: 37298575 DOI: 10.3390/ijms24119624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that play important roles in the early detection of pathogen-associated molecular patterns and shaping innate and adaptive immune responses, which may influence the consequences of infection. Similarly to other viral infections, human immunodeficiency virus type 1 (HIV-1) also modulates the host TLR response; therefore, a proper understanding of the response induced by human HIV-1 or co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), due to the common mode of transmission of these viruses, is essential for understanding HIV-1 pathogenesis during mono- or co-infection with HBV or HCV, as well as for HIV-1 cure strategies. In this review, we discuss the host TLR response during HIV-1 infection and the innate immune evasion mechanisms adopted by HIV-1 for infection establishment. We also examine changes in the host TLR response during HIV-1 co-infection with HBV or HCV; however, this type of study is extremely scarce. Moreover, we discuss studies investigating TLR agonists as latency-reverting agents and immune stimulators towards new strategies for curing HIV. This understanding will help develop a new strategy for curing HIV-1 mono-infection or co-infection with HBV or HCV.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Wang S, Zhu T, Ni W, Zhou C, Zhou H, Lin L, Hu Y, Sun X, Han J, Zhou Y, Jin G, Zu J, Shi H, Yang X, Zhang Z, Hua F. Early activation of Toll-like receptor-3 reduces the pathological progression of Alzheimer's disease in APP/PS1 mouse. Alzheimers Res Ther 2023; 15:33. [PMID: 36797783 PMCID: PMC9933297 DOI: 10.1186/s13195-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) plays an important role in the immune/inflammatory response in the nervous system and is a main pathological feature of Alzheimer's disease (AD). This study investigates the role of early activation of TLR3 in the pathophysiological process of AD. METHODS In the experiment, the agonist of TLR3, Poly(I:C), was intraperitoneally injected into the APP/PS1 mouse model of AD and wild-type control mice starting from the age of 4 to 9 months. At the age of 14 months, behavioral tests were conducted. Western blot and immunohistochemistry staining were used to evaluate the level of amyloid β-protein (Aβ), the activation of inflammatory cells, and neuron loss. In addition, the levels of inflammatory cytokines were measured using a quantitative polymerase chain reaction. RESULTS The results demonstrated that the early activation of TLR3 attenuated neuronal loss and neurobehavioral dysfunction. Moreover, the early activation of TLR3 reduced Aβ deposition, inhibited the activation of microglia and astrocytes, and decreased the transcription of pro-inflammatory factors in the hippocampus. CONCLUSIONS The results indicated that the activation of TLR3 by Poly (I:C) in the early stage of development of AD in a mouse model attenuated neuron loss and improved neurobehavioral functions. The underlying mechanisms could be attributed to its role in Aβ clearance, the inhibition of glial cells, and the regulation of neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Shang Wang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.89957.3a0000 0000 9255 8984Department of Human Anatomy, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Taiyang Zhu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Lin
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuting Hu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Sun
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.452511.6Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guoliang Jin
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongjuan Shi
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingxing Yang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuohui Zhang
- grid.417303.20000 0000 9927 0537Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China ,grid.413389.40000 0004 1758 1622Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China. .,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China. .,Department of Interdisciplinary Health Science, College of Allied Health Science, Augusta University, Augusta, 30912, USA.
| |
Collapse
|
8
|
Huang M, Cao X, He Q, Yang H, Chen Y, Zhao J, Ma H, Kang J, Liu J, Quang F. Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm. J Dairy Sci 2022; 105:10020-10032. [DOI: 10.3168/jds.2022-22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
|
9
|
Yadav M, Malla N. Editorial: Immune Responses in Sexually Transmitted Infections Caused by Parasites and DNA Viruses: New Insights. Front Cell Infect Microbiol 2022; 12:838799. [PMID: 35155285 PMCID: PMC8828637 DOI: 10.3389/fcimb.2022.838799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manisha Yadav
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- *Correspondence: Manisha Yadav, ;
| | - Nancy Malla
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|