1
|
Srivastava P, Rai A, Kumar M. Network analysis of differentially expressed genes involved in oral submucous fibrosis and oral squamous cell carcinoma: a comparative approach. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:583-593. [PMID: 39779388 DOI: 10.1016/j.oooo.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Oral submucous fibrosis (OSMF) is categorized as an oral potentially malignant disorder (OPMD) with an increased risk of occurrence of oral squamous cell carcinoma (OSCC). In this study, we aimed to identify the hub genes associated with OSMF and OSCC. STUDY DESIGN Using RStudio, a set of differentially expressed genes (DEGs) were identified in (A) OSMF, (B) OSCC, and (C) comparative OSMF-OSCC category, obtained from Gene Expression Omnibus (GEO). The Protein to Protein Interaction (PPI) Network, hub genes, and functional annotation were determined using Search Tool for the Retrieval of Interacting Genes (STRING), Cytoscape, and SR-Plot, Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS A total of 2081, 2320, and 3295 DEGs were obtained from the OSMF, OSCC, and comparative categories, respectively. Hub gene and gene enrichment analysis revealed that the genes in (A) MYH6, TTN, TNNT3, MYL1, TPM2, ACTN3, NEB, MYL2, TNNT1, and TPM1; (B) CD4, SELL, CD28, CD27, PRF1, CD80, GZMB, CD40LG, ITGAX, and IL4; and (C) CD4, CD8A, CTLA4, CD28, GZMB, IL79, CD69, CD40LG, IFNG, and CD80 categories, were associated with muscle contraction, cell proliferation, and malignant transformation. CONCLUSIONS Hub genes and functional enrichment analysis revealed the diagnostic genes and the genes responsible for the malignant transformation in OSMF, OSCC, and the comparative category. A panel of identified genes will be of clinical significance in targeted therapy in future studies. (Oral Surg Oral Med Oral Pathol Oral Radiol YEAR;VOL:page range).
Collapse
Affiliation(s)
- Prerna Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arpita Rai
- Dental Institute, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Chang Z, Wang K, Fang Z, Tang Y, Gao X, Tang B. NanoTrackThera Platform for Real-Time, In Situ Monitoring of Tumor Immunotherapy and Photothermal Synergistic Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411705. [PMID: 39846357 DOI: 10.1002/smll.202411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Cancer is one of the leading causes of death worldwide, posing a significant threat to human health. Although immunotherapy has shown promise in cancer treatment, its efficacy is often compromised by tumor immune evasion, which hinders treatment outcomes. Therefore, combining immunotherapy with other therapeutic approaches to enhance its effectiveness has become an increasingly accepted strategy in clinical practice. In response to this need, a nanotechnology-based platform, NanoTrackThera (NTT), which enables both combination therapy and real-time efficacy diagnosis, is developed. Using nonsmall cell lung cancer (NSCLC) as a model, the NTT platform integrates immunotherapy and photothermal therapy (PTT) to enhance the activity of natural killer (NK) cells, employ immune checkpoint inhibitors, and leverage the heat generation from self-assembled nanoparticles under near-infrared (NIR) irradiation to directly kill cancer cells. Simultaneously, the nanoplatform incorporates dual detection capabilities through fluorescence imaging and photoacoustic imaging. With these multimodal imaging techniques, the platform can achieve real-time, in situ, tracking of tumor biomarker changes during treatment, providing precise feedback on the efficacy of the combined immunotherapy and photothermal therapy. The NTT platform significantly enhances therapeutic efficacy while enabling real-time monitoring of dynamic changes in key tumor biomarkers, providing a solution for personalized and adaptive precision therapy.
Collapse
Affiliation(s)
- Zixuan Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Keyi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zixian Fang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
- Shandong Department, Laoshan Laboratory, 168Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237, P. R. China
| |
Collapse
|
3
|
Thulin H, Säfholm J, Lundahl J, Jovic V, Adner M, Nilsson C. Granzyme B is elevated in esophageal biopsies from children with eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 2024; 78:313-319. [PMID: 38374566 DOI: 10.1002/jpn3.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE) is an immune-mediated antigen-triggered inflammatory disease of the esophagus. Our aim was to investigate inflammatory responses by an ex vivo biopsy provocation-based method, stimulating biopsies with milk, wheat, and egg extracts. METHODS An experimental study was conducted on esophageal biopsies from children who underwent esophagogastroduodenoscopy. Supernatants were collected before and after stimulation of the biopsies with food extracts and analyzed for 45 different inflammatory markers. Biopsies were also stained for histological analyzes. RESULTS Study subjects included 13 controls, 9 active EoE, and 4 EoE in remission, median age 12 years. Of the 45 markers analyzed, three had significant differences between controls and patients with active EoE, Granzyme B, (GzmB), IL-1ra, and CXCL8 (p < .05). Levels of GzmB were higher, and levels of IL-1ra were lower in patients with active EoE compared with controls and EoE in remission both at baseline and after food extract stimulation. CXCL8 increased in active EoE compared with controls only after stimulation. The number of histologically detected GzmB-positive cells were significantly higher in patients with active EoE in contrast to control and EoE remission (p < .05). CONCLUSIONS The levels of the barrier-damaging protease GzmB were higher in the supernatant both before and after stimulation with food extract ex vivo in patients with active EoE. GzmB was also observed histologically in biopsies from patients with active EoE. The presence of elevated serine protease GzmB in esophageal mucosa of children with active EoE suggests a role in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Helena Thulin
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Säfholm
- Experimental Asthma and Allergy Research, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Lundahl
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Viktor Jovic
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Nilsson
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Sachs Children and Youth Hospital, Department of Pediatric Allergology and Pulmonology, South Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Kopiasz Ł, Dziendzikowska K, Oczkowski M, Harasym J, Gromadzka-Ostrowska J. Low-molar-mass oat beta-glucan impacts autophagy and apoptosis in early stages of induced colorectal carcinogenesis in rats. Int J Biol Macromol 2024; 254:127832. [PMID: 37924897 DOI: 10.1016/j.ijbiomac.2023.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Oat beta-glucan is one of the soluble dietary fibre fractions with a wide spectrum of biological activities such as anti-inflammatory and anti-tumour properties. In the present study, the effect of low-molar-mass oat beta-glucan isolate (OβGl) on the level of autophagy and apoptosis in the colorectum of rats with induced early stages of colorectal cancer was investigated. Forty-five male Sprague-Dawley rats were divided into two main groups: control and azoxymethane-induced early-stage colorectal carcinogenesis (CRC). Both groups were divided into three dietary subgroups fed standard feed without OβGl (OβGl-), with 1 % of OβGl (OβGl+1 %) or with 3 % of OβGl (OβGl+3 %). The expression of autophagy (LC3B, beclin-1) and apoptosis (caspase-3, cleaved caspase-3, BAX, BCL-2 and PARP-1) markers was determined by immunohistochemistry, Western blot and PCR analysis. The obtained results showed that the expression of LC3B, caspase-3 and cleaved caspase-3 in the CRC mucosa, and LC3B-II expression in the CRC wall were higher in the OβGl+3 % compared to the OβGl- rats. A higher BAX/BCL-2 ratio was also observed in the CRC OβGl+1 % rats compared to the other CRC animals. In summary, OβGl+3 % has a modulatory effect, stimulating autophagy and the extrinsic apoptosis pathway, while OβGl+1 % has a stimulatory effect on the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland.
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
5
|
Sweed D, Mohamady M, Gouda MA, Fayed Y, Saied SA, Elhamed SMA. Does the expression of granzyme B participate in inflammation, fibrosis, and fertility of hydatid cysts? Parasitol Res 2023; 123:22. [PMID: 38072840 PMCID: PMC10710967 DOI: 10.1007/s00436-023-08056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
Echinococcus granulosus (sensu lato), a cestode that is endemic in Egypt, causes cystic echinococcosis (CE), a significant but neglected zoonotic disease that is prevalent throughout the world. Infected hydatid cysts are classified as fertile or non-fertile based on the presence of protoscoleces; nevertheless, the mechanism of non-fertile CE cysts remains unknown. The study aimed to assess whether granzyme B (GrB) expression and CD4 + /CD8 + could be related to the induction of non-fertile CE cysts. A total of fifty-eight individuals diagnosed with visceral hydatid cysts were selected, and they were further divided according to cyst fertility into fertile and non-fertile. Immunohistochemistry for CD4, CD8, and GrB was done. According to the results, hydatid cysts are common in adults and have no gender preference. The same clinical and laboratory data were shared by patients with fertile and non-fertile cysts (p = 0.186). GrB expression was not impacted by the fibrous deposition inside the hydatid cyst wall (p = 0.85); however, GrB was significantly correlated with the inflammatory density (p = 0.005). GrB expression was also found to be significantly higher in non-fertile cysts (p = 0.04). GrB expression is positively correlated with CD4 and CD8 expression. In conclusion, the expression of GrB in hydatid cysts may exacerbate the inflammatory response and impede cyst fertility while not affecting the fibrous deposition in the cyst wall.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Menoufia University, Shebin Elkom, Menoufia, Egypt.
| | - Mohamed Mohamady
- Pathology Department, National Liver Institute, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Marwa A Gouda
- Clinical and Molecular Parasitology Department, National Liver Institute, Shebin Elkom, Menoufia, Egypt
| | - Yahya Fayed
- Hepatopancreatobiliary Surgery Department, National Liver Institute, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Sara A Saied
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Sara M Abd Elhamed
- Pathology Department, National Liver Institute, Menoufia University, Shebin Elkom, Menoufia, Egypt
| |
Collapse
|
6
|
Levy JJ, Zavras JP, Veziroglu EM, Nasir-Moin M, Kolling FW, Christensen BC, Salas LA, Barney RE, Palisoul SM, Ren B, Liu X, Kerr DA, Pointer KB, Tsongalis GJ, Vaickus LJ. Identification of Spatial Proteomic Signatures of Colon Tumor Metastasis: A Digital Spatial Profiling Approach. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:778-795. [PMID: 37037284 PMCID: PMC10284031 DOI: 10.1016/j.ajpath.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
Over 150,000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually >50,000 individuals are estimated to die of CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. CRC tumors are removed en bloc with surrounding vasculature and lymphatics. Examination of regional lymph nodes at the time of surgical resection is essential for prognostication. Developing alternative approaches to indirectly assess recurrence risk would have utility in cases where lymph node yield is incomplete or inadequate. Spatially dependent, immune cell-specific (eg, tumor-infiltrating lymphocytes), proteomic, and transcriptomic expression patterns inside and around the tumor-the tumor immune microenvironment-can predict nodal/distant metastasis and probe the coordinated immune response from the primary tumor site. The comprehensive characterization of tumor-infiltrating lymphocytes and other immune infiltrates is possible using highly multiplexed spatial omics technologies, such as the GeoMX Digital Spatial Profiler. In this study, machine learning and differential co-expression analyses helped identify biomarkers from Digital Spatial Profiler-assayed protein expression patterns inside, at the invasive margin, and away from the tumor, associated with extracellular matrix remodeling (eg, granzyme B and fibronectin), immune suppression (eg, forkhead box P3), exhaustion and cytotoxicity (eg, CD8), Programmed death ligand 1-expressing dendritic cells, and neutrophil proliferation, among other concomitant alterations. Further investigation of these biomarkers may reveal independent risk factors of CRC metastasis that can be formulated into low-cost, widely available assays.
Collapse
Affiliation(s)
- Joshua J Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire; Department of Dermatology, Dartmouth Health, Lebanon, New Hampshire; Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire.
| | | | - Eren M Veziroglu
- Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | | | | | - Brock C Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Department of Community and Family Medicine, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | - Lucas A Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire; Integrative Neuroscience at Dartmouth Graduate Program, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | - Rachael E Barney
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Scott M Palisoul
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Bing Ren
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Xiaoying Liu
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Darcy A Kerr
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| | - Kelli B Pointer
- Section of Radiation Oncology, Department of Medicine, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire
| | - Gregory J Tsongalis
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire.
| | - Louis J Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire
| |
Collapse
|
7
|
Gleave A, Granville DJ. Granzyme B in Autoimmune Skin Disease. Biomolecules 2023; 13:388. [PMID: 36830757 PMCID: PMC9952967 DOI: 10.3390/biom13020388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Autoimmune diseases often present with cutaneous symptoms that contribute to dysfunction, disfigurement, and in many cases, reduced quality-of-life. Unfortunately, treatment options for many autoimmune skin diseases are limited. Local and systemic corticosteroids remain the current standard-of-care but are associated with significant adverse effects. Hence, there is an unmet need for novel therapies that block molecular drivers of disease in a local and/or targeted manner. Granzyme B (GzmB) is a serine protease with known cytotoxic activity and emerging extracellular functions, including the cleavage of cell-cell junctions, basement membranes, cell receptors, and other structural proteins. While minimal to absent in healthy skin, GzmB is markedly elevated in alopecia areata, interface dermatitis, pemphigoid disease, psoriasis, systemic sclerosis, and vitiligo. This review will discuss the role of GzmB in immunity, blistering, apoptosis, and barrier dysfunction in the context of autoimmune skin disease. GzmB plays a causal role in the development of pemphigoid disease and carries diagnostic and prognostic significance in cutaneous lupus erythematosus, vitiligo, and alopecia areata. Taken together, these data support GzmB as a promising therapeutic target for autoimmune skin diseases impacted by impaired barrier function, inflammation, and/or blistering.
Collapse
Affiliation(s)
- Anna Gleave
- British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - David J. Granville
- British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
8
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Huang X, Zhang Y, Huang J, Gao W, Yongfang X, Zeng C, Gao C. The effect of FMT and vitamin C on immunity-related genes in antibiotic-induced dysbiosis in mice. PeerJ 2023; 11:e15356. [PMID: 37193034 PMCID: PMC10183171 DOI: 10.7717/peerj.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Antibiotics are double-edged swords. Although antibiotics are used to inhibit pathogenic bacteria, they also run the risk of destroying some of the healthy bacteria in our bodies. We examined the effect of penicillin on the organism through a microarray dataset, after which 12 genes related to immuno-inflammatory pathways were selected by reading the literature and validated using neomycin and ampicillin. The expression of genes was measured using qRT-PCR. Several genes were significantly overexpressed in antibiotic-treated mice, including CD74 and SAA2 in intestinal tissues that remained extremely expressed after natural recovery. Moreover, transplantation of fecal microbiota from healthy mice to antibiotic-treated mice was made, where GZMB, CD3G, H2-AA, PSMB9, CD74, and SAA1 were greatly expressed; however, SAA2 was downregulated and normal expression was restored, and in liver tissue, SAA1, SAA2, SAA3 were extremely expressed. After the addition of vitamin C, which has positive effects in several aspects, to the fecal microbiota transplantation, in the intestinal tissues, the genes that were highly expressed after the fecal microbiota transplantation effectively reduced their expression, and the unaffected genes remained normally expressed, but the CD74 gene remained highly expressed. In liver tissues, normally expressed genes were not affected, but the expression of SAA1 was reduced and the expression of SAA3 was increased. In other words, fecal microbiota transplantation did not necessarily bring about a positive effect of gene expression restoration, but the addition of vitamin C effectively reduced the effects of fecal microbiota transplantation and regulated the balance of the immune system.
Collapse
Affiliation(s)
- Xiaorong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Yv Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Junsong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Gao
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China
| | - Xie Yongfang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chuisheng Zeng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chao Gao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| |
Collapse
|
10
|
Ii T, Chambers JK, Nakashima K, Goto-Koshino Y, Mizuno T, Uchida K. Intraepithelial cytotoxic lymphocytes are associated with a poor prognosis in feline intestinal T-cell lymphoma. Vet Pathol 2022; 59:931-939. [PMID: 36052863 DOI: 10.1177/03009858221120010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of cytotoxic molecules in feline intestinal T-cell lymphoma cells was examined immunohistochemically using endoscopic samples of 50 cases. Cases included 14 large-cell lymphomas (LCLs) and 36 small-cell lymphomas (SCLs). Most LCL and some SCL exhibited marked erosion and villous atrophy. Clonal T-cell receptor (TCR) gene rearrangement was detected in 10/14 (71%) LCL cases and 33/36 (92%) SCL cases. No clonal immunoglobulin heavy chain (IgH) gene rearrangement was detected. Immunohistochemically, all cases were positive for CD3 and negative for CD79α, CD30, CD56, and Foxp3. LCLs were positive for CD8 in 13/14 cases (93%), T-cell intracellular antigen 1 (TIA1) in 14/14 cases (100%), and granzyme B in 6/14 cases (43%). SCLs were positive for CD8 in 28/36 cases (78%), TIA1 in 33/36 cases (92%), and granzyme B in 2/36 cases (6%). TIA1- and granzyme B-positive neoplastic lymphocytes were predominantly observed in the mucosal epithelium of 10/50 cases (20%) and 6/50 cases (12%), respectively. No significant differences in survival time were found based on cell size or epitheliotropism. However, cases with TIA1+ and/or granzyme B+ neoplastic lymphocytes predominantly in the mucosal epithelium had significantly shorter survival times (P < .05), suggesting that mucosal epithelium infiltration of neoplastic cells with a cytotoxic immunophenotype is a negative prognostic factor. Therefore, intraepithelial cytotoxic lymphocytes may be associated with mucosal injury and impaired intestinal function, leading to a poor prognosis in cats with intestinal T-cell lymphoma.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Saitama, Japan
| | | | | | | |
Collapse
|
11
|
Yip HF, Chowdhury D, Wang K, Liu Y, Gao Y, Lan L, Zheng C, Guan D, Lam KF, Zhu H, Tai X, Lu A. ReDisX, a machine learning approach, rationalizes rheumatoid arthritis and coronary artery disease patients uniquely upon identifying subpopulation differentiation markers from their genomic data. Front Med (Lausanne) 2022; 9:931860. [PMID: 36072953 PMCID: PMC9441882 DOI: 10.3389/fmed.2022.931860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Diseases originate at the molecular-genetic layer, manifest through altered biochemical homeostasis, and develop symptoms later. Hence, symptomatic diagnosis is inadequate to explain the underlying molecular-genetic abnormality and individual genomic disparities. The current trends include molecular-genetic information relying on algorithms to recognize the disease subtypes through gene expressions. Despite their disposition toward disease-specific heterogeneity and cross-disease homogeneity, a gap still exists in describing the extent of homogeneity within the heterogeneous subpopulation of different diseases. They are limited to obtaining the holistic sense of the whole genome-based diagnosis resulting in inaccurate diagnosis and subsequent management. Addressing those ambiguities, our proposed framework, ReDisX, introduces a unique classification system for the patients based on their genomic signatures. In this study, it is a scalable machine learning algorithm deployed to re-categorize the patients with rheumatoid arthritis and coronary artery disease. It reveals heterogeneous subpopulations within a disease and homogenous subpopulations across different diseases. Besides, it identifies granzyme B (GZMB) as a subpopulation-differentiation marker that plausibly serves as a prominent indicator for GZMB-targeted drug repurposing. The ReDisX framework offers a novel strategy to redefine disease diagnosis through characterizing personalized genomic signatures. It may rejuvenate the landscape of precision and personalized diagnosis and a clue to drug repurposing.
Collapse
Affiliation(s)
- Hiu F. Yip
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Debajyoti Chowdhury
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Kexin Wang
- National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangzhou, China
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Gao
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Liang Lan
- Department of Communication Studies, School of Communication, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Chaochao Zheng
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Kei F. Lam
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hailong Zhu
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Xuecheng Tai
- Department of Mathematics, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Aiping Lu
- Computational Medicine Laboratory, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Shahri JJ, Saberianpour S, Bayegi SN. Comparison of tissue biomarkers in arterial and vein (arteriovenous fistula) aneurysms. Phlebology 2022; 37:289-295. [DOI: 10.1177/02683555211070189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction and objectives Aneurysms are distinguished by inflammation, matrix degradation, and apoptosis of smooth muscle cells. In this study, specialized aneurysms tissue markers including venous and arterial aneurysms were studied. Material and methods The present cross-sectional study was conducted throughout January–September 2021. Tissue samples were collected during surgery. Hematoxylin and eosin (H&E) stains, have been utilized to identify different aneurysm types and the morphologic alterations that serve as the foundation for aneurysm diagnosis. Measurement of collagen type III, IV, CCR2, metalloproteinase (2 and 13), and granzyme K was done by ELISA method. Results were presented as the mean ± standard deviation and analyzed by t tests (Graph Pad Prism 8.4.3.686) Results During the period from January to September 2021, 14 patients with peripheral venous and arterial aneurysms were referred to Alavi Vascular Surgery Hospital and underwent surgery. Of these, 10 patients were matched and remained available for study. The level of type 3 collagen was significantly reduced in arterial aneurysm compared to venous aneurysm ( p < 0.05). Granzyme K in arterial aneurysm showed increase compared to venous aneurysm ( p < 0.05). Metalloproteinase 2 in arterial aneurysms higher than venous aneurysm ( p < 0.001). Metalloproteinase 13 in arterial aneurysm also showed increase compared to venous aneurysm ( p < 0.05). Conclusion Results of this study shows differences in the level of tissue biomarkers in arterial and vein (arteriovenous fistula) aneurysms.
Collapse
Affiliation(s)
- Jamal J Shahri
- Vascular and Endovascular Surgery Research Center, Mashhad Medical University, Mashhad, Iran
| | - Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad Medical University, Mashhad, Iran
| | - Saeed N Bayegi
- Vascular and Endovascular Surgery Research Center, Mashhad Medical University, Mashhad, Iran
| |
Collapse
|
13
|
Lv M, Qiu X, Wang J, Wang Y, Liu Q, Zhou H, Zhang A, Wang X. Regulation of Il-2 on the expression of granzyme B- and perforin-like genes and its functional implication in grass carp peripheral blood neutrophils. FISH & SHELLFISH IMMUNOLOGY 2022; 124:472-479. [PMID: 35483596 DOI: 10.1016/j.fsi.2022.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Granzyme (Gzm) B and perforin, both as cytotoxic proteins, can collaborate to induce the death of target cells as well as the microbes. They were originally discovered in cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and confer the cytotoxic activities of these cells. In the present study, the coding sequences of a granzyme b-like (gcgzmbl) and a perforin-like (gcprfl) genes were cloned from grass carp (Ctenopharyngodon idellus) and their specific antibodies were subsequently prepared and validated. The mRNA and protein expression of these two cytotoxic proteins in grass carp peripheral blood neutrophils was demonstrated by quantitative PCR (qPCR) and immunofluorescence staining, respectively. In the same cell model, expression of gcGzmbl and gcPrfl was stimulated by grass carp interleukin (Il)-2 in a dose- and time-dependent manners and Erk, NF-κB and Stat5 pathways were found to be involved in the regulation of Il-2 on the genes' expression. Additionally, glycolysis was proved to play a role in the stimulation of Il-2 on gcGzmbl and gcPrfl expression in peripheral blood neutrophils. As combating the invading microorganisms is one of the main functions of neutrophils, the roles of gcGzmbl and gcPrfl in the anti-bacterial activities of grass carp peripheral blood neutrophils were explored. Results showed that immunoneutralization of gcGzmbl or gcPrfl significantly attenuated the antimicrobial abilities of the neutrophils enhanced by Il-2. These findings shed a light on the expression, regulation and functions of granzyme B- and perforin-like proteins in fish peripheral blood neutrophils and enrich the understanding of Il-2 function in fish innate immunity.
Collapse
Affiliation(s)
- Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jiankang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qingqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|