1
|
Yi T, Zhang W, Hua Y, Xin X, Wu Z, Li Y, Wen C, Fan Y, Ji J, Xu L. Rutin alleviates lupus nephritis by inhibiting T cell oxidative stress through PPARγ. Chem Biol Interact 2024; 394:110972. [PMID: 38555047 DOI: 10.1016/j.cbi.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by complex clinical symptoms and multi-organ damage. One of the most prevalent complications of SLE is lupus nephritis (LN). Rutin, a natural flavonoid compound found in various plants used in traditional Chinese medicine, has shown promising anti-inflammatory, antioxidant, and renal protective effects. In our study, we treated MRL/lpr mice, a model known for spontaneously developing LN, with Rutin. Our findings reveal that Rutin markedly reduced serum cytokine and autoantibody levels and decreased inflammatory cell infiltration in renal tissues, thereby ameliorating kidney pathology. In vitro experiments indicated that Rutin's therapeutic effect on LN is linked to its significant reduction of oxidative stress in T cells. Further investigations suggest that Rutin enhances oxidative stress management through the modulation of Peroxisome proliferator-activated receptor gamma (PPARγ). We observed that Rutin modulates PPARγ activity, leading to reduced transcriptional activity of NF-κB and STAT3, which in turn inhibits the secretion of inflammatory cytokines such as IL-6, TNF-α, and IL-17. In summary, Rutin can exert an antioxidant effect by regulating PPARγ and shows therapeutic action against LN.
Collapse
Affiliation(s)
- Tongtong Yi
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Wei Zhang
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Ying Hua
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Xingpan Xin
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Zhenyu Wu
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Ying Li
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Chengping Wen
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China
| | - Yongsheng Fan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China.
| | - Li Xu
- College of Basic Medical, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310051, China.
| |
Collapse
|
2
|
Zhang J, Ren Y, Liu Y, Wang Z, Li Y, Li C, Chang H, Zhang Y. A systematic strategy for investigating the pharmacological effects and mechanism of traditional Chinese medicinal formula: Guilin Xiguashuang as a case. Fundam Clin Pharmacol 2024; 38:238-251. [PMID: 37694887 DOI: 10.1111/fcp.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Traditional Chinese medicinal formula (TCMF) has specific advantages in treating diseases. However, the pharmacological effects and mechanism of TCMF composed of traditional Chinese medicines (TCM) with unclear active components or targets have not yet been fully elucidated. OBJECTIVES This research proposed a strategy for elucidating the pharmacological effects and mechanism to address this issue systematically. METHODS With Guilin Xiguashuang (GLXGS) taken as a case, this study newly provided the multi-level assays, which decomposes TCMF into components, TCM, and TCMF levels. The main pharmacological effects were acquired through a comprehensive analysis based on the active components, pharmacological effects of TCM, and clinical efficacy of TCMF, respectively. The core targets and pathways were further identified and verified to elucidate the mechanism. RESULTS The main pharmacological effects of GLXGS were anti-inflammatory, analgesic, antibacterial, immunoregulatory, and wound healing. Moreover, the mechanism analysis demonstrated that GLXGS was involved in the regulation of NF-κB and VEGF signaling pathways and core targets, such as IL-6 and TNF-α. Finally, unproven immunomodulatory and anti-inflammatory mechanism were verified using RAW264.7 and THP-1 cells. GLXGS was verified to down-regulate IL-6, IL-1β, TNF-α, and CD86 in lipopolysaccharides-stimulated RAW264.7 cells, while enhancing polarization in both RAW264.7 and THP-1 cells, which were consistent with analysis results. CONCLUSION The present research provides a systematic strategy for the pharmacological effect prediction and mechanism analysis of TCMF, which is of great significance for studying complex TCMF.
Collapse
Affiliation(s)
- Jianing Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ren
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Liu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zian Wang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Li
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Guangxi Traditional Chinese Medicine Research Center, Guilin, China
| | - Hua Chang
- Guangxi Traditional Chinese Medicine Research Center, Guilin, China
| | - Yanling Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Yang Y, Huang D, Liu C, Zhong N, Peng Y, Wang L, Xiao L, Zhao W. Early diagnosis and clinical application of systemic lupus erythematosus based on a nomogram model. Heliyon 2024; 10:e24523. [PMID: 38304801 PMCID: PMC10830536 DOI: 10.1016/j.heliyon.2024.e24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multi-system and multi-organ dysfunction, and is easily misdiagnosed early in the disease course. We aimed to accurately predict early SLE nomogram to provide a reference basis for the early clinical diagnosis of SLE. Methods: We retrospectively analyzed 167 patients who were first diagnosed with SLE at Fengxian District Central Hospital, Shanghai, between March 2017 and October 2022. Three groups of 129 physically healthy subjects, 67 patients with rheumatoid arthritis, and 40 patients with rashes were selected as controls during the same period. Patients with SLE and control group were randomly divided into training (n = 217) and validation (n = 141) group. Univariate and multivariate analyses were used to identify independent risk factors for early SLE diagnosis. The independent risk factors for diagnosis were used to construct a nomogram to predict early SLE. Results: Based on the training group, three variables were identified as independently influencing early SLE: platelets (odds ratio OR = 0.993, P = 0.047), albumin (OR = 0.833, P = 0.007), and complement component 1q (OR = 0.956, P = 0.000). The precision of the nomogram was assessed using C-index values and calibration plot diagrams. The C-index values were 0.929 for training group and 0.898 for validation group. Both the training group and validation group calibration curves showed good predicted outcomes. Conclusion: The construction of a nomogram can accurately predict the risk of early SLE. The model showed good discriminatory power and calibration for use in the diagnosis of SLE, providing a visual tool and reference basis for the early diagnosis of SLE.
Collapse
Affiliation(s)
- Yalin Yang
- Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, China
| | - Dingding Huang
- Department of Anesthesiology, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| | - Cuicui Liu
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| | - Ningxuan Zhong
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| | - You Peng
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| | - Lulu Wang
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| | - Linlin Xiao
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| | - Weiwei Zhao
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201499, China
| |
Collapse
|
4
|
Yan Z, Chen Q, Xia Y. Oxidative Stress Contributes to Inflammatory and Cellular Damage in Systemic Lupus Erythematosus: Cellular Markers and Molecular Mechanism. J Inflamm Res 2023; 16:453-465. [PMID: 36761905 PMCID: PMC9907008 DOI: 10.2147/jir.s399284] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with complex pathogenesis, the treatment of which relies exclusively on the use of immunosuppressants. Increased oxidative stress is involved in causing inflammatory and cellular defects in the pathogenesis of SLE. Various inflammatory and cellular markers including oxidative modifications of proteins, lipids, and DNA contribute to immune system dysregulation and trigger an aggressive autoimmune attack through molecular mechanisms like enhanced NETosis, mTOR pathway activation, and imbalanced T-cell differentiation. Accordingly, the detection of inflammatory and cellular markers is important for providing an accurate assessment of the extent of oxidative stress. Oxidative stress also reduces DNA methylation, thus allowing the increased expression of affected genes. As a result, pharmacological approaches targeting oxidative stress yield promising results in treating patients with SLE. The purpose of this review is to examine the involvement of oxidative stress in the pathogenesis and management of SLE.
Collapse
Affiliation(s)
- Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Qin Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China,Correspondence: Yumin Xia, Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, 710004, People’s Republic of China, Tel/Fax +86-29-87679969, Email
| |
Collapse
|
5
|
Yao H, Yang H, Wang Y, Xing Q, Yan L, Chai Y. Gut microbiome and fecal metabolic alteration in systemic lupus erythematosus patients with depression. Front Cell Infect Microbiol 2022; 12:1040211. [PMID: 36506019 PMCID: PMC9732533 DOI: 10.3389/fcimb.2022.1040211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Mental health disorders in systemic lupus erythematosus (SLE) are gradually getting recognized; however, less is known regarding the actual structure and compositional alterations in gut microbiome and metabolism and the mechanisms of how they affect depression development in SLE patients. Methods Twenty-one SLE patients with depression (SLE-d), 17 SLE patients without depression (SLE-nd), and 32 healthy controls (HC) were included in this study. Fecal samples were collected for 16S rRNA gene sequencing and ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics. Results The structure of gut microbiome in the SLE-d group changed compared with that in the other two groups. The microbiome composition of SLE-d group showed decreased species richness indices, characterized by low ACE and Chao1 indices, a decrease in the ratio of phylum Firmicutes to Bacteroidetes, genus Faecalibacterium and Roseburia. A downregulation of the metabolite fexofenadine involved in bile secretion was positively correlated with the genus Faecalibacterium, Subdoligranulum and Agathobacter. Compared with the SLE-nd group, the SLE-d group had elevated serum levels of IL-2 and IL-6 and decreased BDNF. Interestingly, abundance of the genus Faecalibacterium and Roseburia was negatively correlated with IL-6, abundance of the genus Roseburia was negatively correlated with IL-2, and abundance of the genus Bacteroides was positively correlated with IL-2. Conclusion This study identified specific fecal microbes and their metabolites that may participate in the development of SLE-d. Our findings provide a new perspective for improving depression in SLE patients by regulating the gut-brain axis.
Collapse
Affiliation(s)
- Han Yao
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Hao Yang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yueying Wang
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Qian Xing
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China,*Correspondence: Qian Xing,
| | - Lin Yan
- School of Clinical Medicine, Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Yaru Chai
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Sanders JM, Jeyamogan S, Mathew JM, Leventhal JR. Foxp3+ regulatory T cell therapy for tolerance in autoimmunity and solid organ transplantation. Front Immunol 2022; 13:1055466. [PMID: 36466912 PMCID: PMC9714335 DOI: 10.3389/fimmu.2022.1055466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Regulatory T cells (Tregs) are critical for tolerance in humans. The exact mechanisms by which the loss of peripheral tolerance leads to the development of autoimmunity and the specific role Tregs play in allograft tolerance are not fully understood; however, this population of T cells presents a unique opportunity in the development of targeted therapeutics. In this review, we discuss the potential roles of Foxp3+ Tregs in the development of tolerance in transplantation and autoimmunity, and the available data regarding their use as a treatment modality.
Collapse
Affiliation(s)
- Jes M. Sanders
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shareni Jeyamogan
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M. Mathew
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Leventhal
- Department of Surgery, Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Simpson Querrey Institute for BioNanotechnology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Höglund P. Gender bias in complex autoimmune disorders: Clinically characterized cohorts pave the way for new knowledge. Scand J Immunol 2022. [DOI: 10.1111/sji.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM) Karolinska Institutet Stockholm Sweden
| |
Collapse
|
8
|
Yan B, Xiong J, Ye Q, Xue T, Xiang J, Xu M, Li F, Wen W. Correlation and prognostic implications of intratumor and tumor draining lymph node Foxp3 + T regulatory cells in colorectal cancer. BMC Gastroenterol 2022; 22:122. [PMID: 35296257 PMCID: PMC8925044 DOI: 10.1186/s12876-022-02205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prognostic value of intratumor T regulatory cells (Tregs) in colorectal cancer (CRC) was previously reported, but the role of these cells in tumor draining lymph nodes (TDLNs) was less addressed. METHODS A total of 150 CRC stages I-IV were retrospectively enrolled. Intratumor and TDLN Tregs were examined by immunohistochemical assay. The association of these cells was estimated by Pearson correlation. Survival analyses of subgroups were conducted by Kaplan-Meier curves, and the log-rank test and risk factors for survival were tested by the Cox proportional hazard model. RESULTS High accumulation of Tregs in tumors was significant in patients with younger age and good histological grade, where enrichment of these cells in TDLNs was more apparent in those with node-negative disease and early TNM stage disease, both of which were more common in early T stage cases. A significant correlation of intratumoral and TDLN Tregs was detected. Patients with higher intratumoral Tregs displayed significantly better PFS and OS than those with lower Tregs. However, no such differences were found, but a similar prognostic prediction trend was found for these cells in TDLNs. Finally, intratumoral Tregs were an independent prognostic factor for both PFS (HR = 0.97, 95% CI 0.95-0.99, P < 0.01) and OS (HR = 0.98, 95% CI 0.95-1.00, P = 0.04) in the patients. CONCLUSIONS Higher intratumor Tregs were associated with better survival in CRC. Although no such role was found for these cells in TDLNs, the positive correlation and similar prognostic prediction trend with their intratumoral counterparts may indicate a parallelized function of these cells in CRC.
Collapse
Affiliation(s)
- Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jianmei Xiong
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Mingyue Xu
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Fang Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China.
| | - Wei Wen
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China.
| |
Collapse
|