1
|
Alba-Cano T, Fernández-Cruz E, Alonso R, Muñoz-Gómez S, Pérez de Diego R, García Martínez E, Sánchez-Mateos P, Navarro Caspistegui J, Martín López M, Gil-Herrera J. Lack of Specific Immune Response after Five Doses of mRNA SARS-CoV-2 Vaccine in a Patient with CD4 + T-Cell Lymphopenia but Preserved Responses to CMV. Vaccines (Basel) 2024; 12:386. [PMID: 38675768 PMCID: PMC11054516 DOI: 10.3390/vaccines12040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Immunogenicity of SARS-CoV-2 mRNA vaccines is highly heterogeneous in patients with inborn errors of immunity (IEIs). This case report analyzes the immune response to mRNA COVID-19 two-dose primary vaccination followed by three boosters in an IEI patient with marked CD4+ T-cell cytopenia and diminished thymic output, in comparison with that raised against latent, chronic cytomegalovirus (CMV) infection. Serum IgG antibodies anti-spike (S) protein of SARS-CoV-2 and anti-CMV were both determined by chemiluminescent microparticle immunoassays (CMIAs). SARS-CoV-2 and CMV memory CD4+ T-cell responses were simultaneously evaluated in vitro using an activation-induced marker (AIM) assay via multicolor flow cytometry. Throughout the 2-year follow-up that included the administration of five doses of SARS-CoV-2 mRNA vaccines, cellular anti-SARS-CoV-2-specific responses remained consistently negative, with extremely weak humoral responses, while the patient showed in vitro persistent CD4+ T-cell reactivity to CMV peptides and high-IgG CMV-specific titers. The assessment of immune responses to vaccines and prevalent viruses is essential in IEI patients in order to take adequate preventive measures.
Collapse
Affiliation(s)
- Trinidad Alba-Cano
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Eduardo Fernández-Cruz
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Roberto Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón and CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, 08028 Barcelona, Spain;
| | - Sara Muñoz-Gómez
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046 Madrid, Spain;
| | - Elena García Martínez
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Paloma Sánchez-Mateos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain;
| | - Joaquín Navarro Caspistegui
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Mónica Martín López
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Juana Gil-Herrera
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
2
|
Torres-Valle A, Aragon L, Silva SL, Serrano C, Marcos M, Melero J, Bonroy C, Arenas-Caro PP, Casado DM, Olaizola PMR, Neirinck J, Hofmans M, de Arriba S, Jara M, Prieto C, Sousa AE, Prada Á, van Dongen JJM, Pérez-Andrés M, Orfao A. In-depth blood immune profiling of Good syndrome patients. Front Immunol 2023; 14:1285088. [PMID: 38035080 PMCID: PMC10684950 DOI: 10.3389/fimmu.2023.1285088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID). Methods Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61). Results All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/μL) in 8/9 cases-, together with decreased numbers of total CD4+ T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCRγδ+ T-cells (p ≤ 0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4+ T-cells revealed significantly decreased blood counts of naïve, central memory (CM) and transitional memory (TM) TCD4+ cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c+ and CD141+ myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCRγδ+ T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected. Discussion Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Alba Torres-Valle
- Translational and Clinical Research Program, Centro de investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Larraitz Aragon
- Immunology Department, Donostia University Hospital, Osakidetza Basque Health Service, San Sebastián, Spain
| | - Susana L. Silva
- Serviço de Imunoalergologia, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Josefa Melero
- Servicio de inmunología y genética, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Carolien Bonroy
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pedro Pablo Arenas-Caro
- Immunology Department, Donostia University Hospital, Osakidetza Basque Health Service, San Sebastián, Spain
| | - David Monzon Casado
- Immunology Department, Donostia University Hospital, Osakidetza Basque Health Service, San Sebastián, Spain
| | | | - Jana Neirinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Mattias Hofmans
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sonia de Arriba
- Pediatrics Department, University Hospital of Salamanca, Salamanca, Spain
| | - María Jara
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- DNA Sequencing Service (NUCLEUS), University of Salamanca, Salamanca, Spain
| | - Carlos Prieto
- Bioinformatics service (NUCLEUS), University of Salamanca, Salamanca, Spain
| | - Ana E. Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Álvaro Prada
- Immunology Department, Donostia University Hospital, Osakidetza Basque Health Service, San Sebastián, Spain
| | - Jacques J. M. van Dongen
- Translational and Clinical Research Program, Centro de investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Martín Pérez-Andrés
- Translational and Clinical Research Program, Centro de investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Zhai JW, Lv LL, Wu JJ, Zhang YX, Shen Y, Qu QX, Chen C. Combining local cryoablation with PD-L1 blockade synergistically eradicates established murine lung cancer by modulating mitochondrial in PD-1+CD8+ T cell. Immunol Lett 2023; 263:61-69. [PMID: 37805094 DOI: 10.1016/j.imlet.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Immune checkpoint blockade (ICB) has shown improvement in overall survival for lung cancer in clinical trials. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that combinatorial anti-PD-L1/cryoablation therapy generated a synergistic antitumor activity in the established lung cancer model. Importantly, it was observed that this favorable antitumor immune response comes predominantly from the PD-1+CD8+ T cells generated after the combination therapy, referred as improvement of IFN-γ production and mitochondrial metabolism, which resembled highly functional effectors CD8+ T cells. Notably, the cellular levels of mitochondrial reactive oxygen and mitochondria mass excessively coincided with alteration of IFN-γ secretion in PD-1+CD8+T cell subset. So far, anti-PD-L1/cryoablation therapy selectively derived the improvement of depolarized mitochondria in PD-1+CD8+T cell subset, subsequently rebuild the anti-tumor function of the exhausted CD8+ T cells. Collectively, there is considerable interest in anti-PD-L1 plus cryoablation combination therapy for patients with lung cancer, and defining the underlying mechanisms of the observed synergy.
Collapse
Affiliation(s)
- Jia-Wei Zhai
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Lei-Lei Lv
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Jia-Juan Wu
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China
| | - Yao-Xin Zhang
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Yu Shen
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China
| | - Qiu-Xia Qu
- Clinical Immunology Laboratory, the First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou 215006, China.
| | - Cheng Chen
- Respiratory Department, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China.
| |
Collapse
|
4
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front Immunol 2022; 13:912826. [PMID: 35784324 PMCID: PMC9241517 DOI: 10.3389/fimmu.2022.912826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes’ differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Reza Yazdani, ;
| |
Collapse
|