1
|
Kammann T, Gorin JB, Parrot T, Gao Y, Ponzetta A, Emgård J, Maleki KT, Sekine T, Rivera-Ballesteros O, Karolinska COVID-19 Study Group, Gredmark-Russ S, Rooyackers O, Skagerberg M, Eriksson LI, Norrby-Teglund A, Mak JY, Fairlie DP, Björkström NK, Klingström J, Ljunggren HG, Aleman S, Buggert M, Strålin K, Sandberg JK. Dynamic MAIT Cell Recovery after Severe COVID-19 Is Transient with Signs of Heterogeneous Functional Anomalies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:389-396. [PMID: 38117799 PMCID: PMC10784727 DOI: 10.4049/jimmunol.2300639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Emgård
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Department of Clinical Interventions and Technology, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Magdalena Skagerberg
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I. Eriksson
- Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Ustiuzhanina MO, Vavilova JD, Boyko AA, Streltsova MA, Kust SA, Kanevskiy LM, Sapozhnikov AM, Iskhakov RN, Gubernatorova EO, Drutskaya MS, Bychinin MV, Zhukova OA, Novikova ON, Sotnikova AG, Yusubalieva GM, Baklaushev VP, Kovalenko EI. Coordinated Loss and Acquisition of NK Cell Surface Markers Accompanied by Generalized Cytokine Dysregulation in COVID-19. Int J Mol Sci 2023; 24:1996. [PMID: 36768315 PMCID: PMC9917026 DOI: 10.3390/ijms24031996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome.
Collapse
Affiliation(s)
- Maria O. Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Julia D. Vavilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna A. Boyko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sofya A. Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Leonid M. Kanevskiy
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M. Sapozhnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam N. Iskhakov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina O. Gubernatorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina S. Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
| | - Mikhail V. Bychinin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Oksana A. Zhukova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Oksana N. Novikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Anna G. Sotnikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Palma Medina LM, Babačić H, Dzidic M, Parke Å, Garcia M, Maleki KT, Unge C, Lourda M, Kvedaraite E, Chen P, Muvva JR, Cornillet M, Emgård J, Moll K, Karolinska K. I./K. COVID-19 Study Group, Michaëlsson J, Flodström-Tullberg M, Brighenti S, Buggert M, Mjösberg J, Malmberg KJ, Sandberg JK, Gredmark-Russ S, Rooyackers O, Svensson M, Chambers BJ, Eriksson LI, Pernemalm M, Björkström NK, Aleman S, Ljunggren HG, Klingström J, Strålin K, Norrby-Teglund A. Targeted plasma proteomics reveals signatures discriminating COVID-19 from sepsis with pneumonia. Respir Res 2023; 24:62. [PMID: 36829233 PMCID: PMC9950694 DOI: 10.1186/s12931-023-02364-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features. METHODS We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients. RESULTS We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers. CONCLUSIONS This study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.
Collapse
Affiliation(s)
- Laura M. Palma Medina
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Haris Babačić
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Majda Dzidic
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Åsa Parke
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Garcia
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Kimia T. Maleki
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Christian Unge
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Functional Area of Emergency Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Magda Lourda
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Egle Kvedaraite
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Puran Chen
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Jagadeeswara Rao Muvva
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Martin Cornillet
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Johanna Emgård
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Kirsten Moll
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | | | - Jakob Michaëlsson
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Susanna Brighenti
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Marcus Buggert
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Jenny Mjösberg
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Karl-Johan Malmberg
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Johan K. Sandberg
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Sara Gredmark-Russ
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Olav Rooyackers
- grid.24381.3c0000 0000 9241 5705Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Division for Anesthesiology and Intensive Care, Department of Clinical Interventions and Technology CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Svensson
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Benedict J. Chambers
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Lars I. Eriksson
- grid.24381.3c0000 0000 9241 5705Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pernemalm
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Niklas K. Björkström
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Soo Aleman
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Jonas Klingström
- grid.24381.3c0000 0000 9241 5705Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden
| | - Kristoffer Strålin
- grid.4714.60000 0004 1937 0626Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52, Stockholm, Sweden.
| |
Collapse
|