1
|
D'Alleva M, Lazzer S, Tringali G, De Micheli R, Bondesan A, Abbruzzese L, Sartorio A. Effects of combined training or moderate intensity continuous training during a 3-week multidisciplinary body weight reduction program on cardiorespiratory fitness, body composition, and substrate oxidation rate in adolescents with obesity. Sci Rep 2023; 13:17609. [PMID: 37848570 PMCID: PMC10582026 DOI: 10.1038/s41598-023-44953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
This study aimed to investigate the effects of combined training (COMB, a combination of moderate-intensity continuous training-MICT and high-intensity interval training-HIIT) vs. continuous MICT administered during a 3-week in-hospital body weight reduction program (BWRP) on body composition, physical capacities, and substrate oxidation in adolescents with obesity. The 3-week in-hospital BWRP entailed moderate energy restriction, nutritional education, psychological counseling, and two different protocols of physical exercise. Twenty-one male adolescents with obesity (mean age: 16.1 ± 1.5 years; mean body mass index [BMI] 37.8 ± 4.5 kg m-2) participated in this randomized control trial study (n:10 for COMB, n:11 MICT), attending ~ 30 training sessions. The COMB group performed 3 repetitions of 2 min at 95% of peak oxygen uptake (V'O2 peak) (e.g., HIIT ≤ 20%), followed by 30 min at 60% of V'O2 peak (e.g., MICT ≥ 80%). Body composition, V'O2 peak, basal metabolic rate (BMR), energy expenditure, and substrate oxidation rate were measured during the first week (W0) and at the end of three weeks of training (W3). The two training programs were equivalent in caloric expenditure. At W3, body mass (BM) and fat mass (FM) decreased significantly in both groups, although the decrease in BM was significantly greater in the MICT group than in the COMB group (BM: - 5.0 ± 1.2 vs. - 8.4 ± 1.5, P < 0.05; FM: - 4.3 ± 3.0 vs. - 4.2 ± 1.9 kg, P < 0.05). V'O2 peak increased only in the COMB by a mean of 0.28 ± 0.22 L min-1 (P < 0.05). The maximal fat oxidation rate (MFO) increased only in the COMB group by 0.04 ± 0.03 g min-1 (P < 0.05). COMB training represents a viable alternative to MICT for improving anthropometric characteristics, physical capacities, and MFO in adolescents with obesity during a 3-week in-hospital BWRP.
Collapse
Affiliation(s)
- Mattia D'Alleva
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
- School of Sport Science, University of Udine, Udine, Italy.
| | - Stefano Lazzer
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
- School of Sport Science, University of Udine, Udine, Italy
| | - Gabriella Tringali
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Piancavallo-Verbania, Italy
| | - Roberta De Micheli
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Piancavallo-Verbania, Italy
| | - Laura Abbruzzese
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Piancavallo-Verbania, Italy
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Piancavallo-Verbania, Italy
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
2
|
Yin M, Chen Z, Nassis GP, Liu H, Li H, Deng J, Li Y. Chronic high-intensity interval training and moderate-intensity continuous training are both effective in increasing maximum fat oxidation during exercise in overweight and obese adults: A meta-analysis. J Exerc Sci Fit 2023; 21:354-365. [PMID: 37701124 PMCID: PMC10494468 DOI: 10.1016/j.jesf.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Objective to (1) systematically review the chronic effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on maximal fat oxidation (MFO) in overweight and obese adults, and (2) explore MFO influencing factors and its dose-response relationships with HIIT and MICT. Methods Studies using a between-group design involving overweight and obese adults and assessing the effect of HIIT and MICT on MFO were included. A meta-analysis on MFO indices was conducted, and the observed heterogeneities were explored through subgroup, regression, and sensitivity analyses. Results Thirteen studies of moderate to high quality with a total of 519 overweight and obese subjects were included in this meta-analysis (HIIT, n = 136; MICT, n = 235; Control, n = 148). HIIT displayed a statistically significant favorable effect on MFO compared to no-training (MD = 0.07; 95%CI [0.03 to 0.11]; I2 = 0%). Likewise, MICT displayed a statistically significant favorable effect on MFO compared to no-training (MD = 0.10; 95%CI [0.06 to 0.15]; I2 = 95%). Subgroup and regression analyses revealed that exercise intensity (Fatmax vs. non-Fatmax; %VO2peak), exercise mode, BMI, and VO2peak all significantly moderated MICT on MFO. When analyzing studies that have directly compared HIIT and MCIT in obese people, it seems there is no difference in the MFO change (MD = 0.01; 95%CI [-0.02 to 0.04]; I2 = 64%). No publication bias was found in any of the above meta-analyses (Egger's test p > 0.05 for all). Conclusion Both HIIT and MICT are effective in improving MFO in overweight and obese adults, and they have similar effects. MCIT with an intensity of 65-70% VO2peak, performed 3 times per week for 60 min per session, will optimize MFO increases in overweight and obese adults. Given the lack of studies examining the effect of HIIT on MFO in overweight and obese adults and the great diversity in the training protocols in the existing studies, we were unable to make sound recommendations for training.
Collapse
Affiliation(s)
- Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Zhili Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - George P. Nassis
- Department of Physical Education, College of Education, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Hengxian Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Hansen Li
- Department of Physical Education, Southwest University, Chongqing, China
| | - Jianfeng Deng
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yongming Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
3
|
Nagy D, Trunic N, Prémusz V, Krutek L, Lipcsik Z, Ács P. Comparison of Metabolic Characteristics of Physically Active Individuals with Different Training Habits during Incremental Treadmill Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:70. [PMID: 36612397 PMCID: PMC9819085 DOI: 10.3390/ijerph20010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The number of people engaging in self-conducted regular physical activity is increasing, but the effects of home fitness and individually planned workouts on health and metabolism are unknown. We aimed to examine the effects of regular training conducted without the supervision of professionals on exercise metabolism in our cross-sectional observational study. Forty-five physically active volunteers, classified into three groups, based on the type and frequency of their training (group 1 frequent long-term endurance, group 2 three times per week aerobic training, and group 3 two times per week short aerobic and resistance training), fulfilled a vita maxima incremental treadmill test. Aerobic capacity (VO2max), MET (metabolic equivalent of task), and metabolic responses were examined. The results were evaluated by ANOVA and Bonferroni and Scheffe multiple comparison analysis using Microsoft Excel and SPSS 23 programs. (p < 0.05). Significant differences were found between group 1 and 3 in VO2max (p = 0.46) and MET (p = 0.46) between group 1 and 2, in FatmaxHR (heart rate on maximum fat oxidation) (p= 0.04). We concluded self-conducted regular physical activity has positive effects on metabolism and health. Aerobic training performed four times per week showed the most beneficial effects on metabolism and health maintenance. In addition, based on our findings, strength training performed two times per week is recommended.
Collapse
Affiliation(s)
- Dóra Nagy
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiotherapy and Sport Science, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, 7624 Pécs, Hungary
| | - Nenad Trunic
- Faculty of Physical Culture and Management in Sports, University Singidunum, 11000 Belgrade, Serbia
| | - Viktória Prémusz
- Institute of Physiotherapy and Sport Science, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, 7624 Pécs, Hungary
| | - László Krutek
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary
| | | | - Pongrác Ács
- Institute of Physiotherapy and Sport Science, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary
- Physical Activity Research Group, Szentágothai Research Centre, 7624 Pécs, Hungary
| |
Collapse
|
4
|
Running-Induced Metabolic and Physiological Responses Using New Zealand Blackcurrant Extract in a Male Ultra-Endurance Runner: A Case Study. J Funct Morphol Kinesiol 2022; 7:jfmk7040104. [PMID: 36547650 PMCID: PMC9787938 DOI: 10.3390/jfmk7040104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Physical training for ultra-endurance running provides physiological adaptations for exercise-induced substrate oxidation. We examined the effects of New Zealand blackcurrant (NZBC) extract on running-induced metabolic and physiological responses in a male amateur ultra-endurance runner (age: 40 years, body mass: 65.9 kg, BMI: 23.1 kg·m−2, body fat: 14.7%, V˙O2max: 55.3 mL·kg−1·min−1, resting heart rate: 45 beats·min−1, running history: 6 years, marathons: 20, ultra-marathons: 28, weekly training distance: ~80 km, weekly running time: ~9 h). Indirect calorimetry was used and heart rate recorded at 15 min intervals during 120 min of treadmill running (speed: 10.5 km·h−1, 58% V˙O2max) in an environmental chamber (temperature: ~26 °C, relative humidity: ~70%) at baseline and following 7 days intake of NZBC extract (210 mg of anthocyanins·day−1) with constant monitoring of core temperature. The male runner had unlimited access to water and consumed a 100-kcal energy gel at 40- and 80 min during the 120 min run. There were no differences (mean of 8, 15 min measurements) for minute ventilation, oxygen uptake, carbon dioxide production and core temperature. With NZBC extract, the respiratory exchange ratio was 0.02 units lower, carbohydrate oxidation was 11% lower and fat oxidation was 23% higher (control: 0.39 ± 0.08, NZBC extract: 0.48 ± 0.12 g·min−1, p < 0.01). Intake of the energy gel did not abolish the enhanced fat oxidation by NZBC extract. Seven days’ intake of New Zealand blackcurrant extract altered exercise-induced substrate oxidation in a male amateur ultra-endurance runner covering a half-marathon distance in 2 h. More studies are required to address whether intake of New Zealand blackcurrant extract provides a nutritional ergogenic effect for ultra-endurance athletes to enhance exercise performance.
Collapse
|
5
|
Astorino TA, McMillan DW. Similar fat and carbohydrate oxidation in response to arm cycling exercise in persons with spinal cord injury versus able-bodied. J Spinal Cord Med 2022; 45:840-847. [PMID: 34338616 PMCID: PMC9662004 DOI: 10.1080/10790268.2021.1952385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
CONTEXT Persons with spinal cord injury (SCI) present with low fat oxidation that is associated with poor cardiometabolic health. This study compared changes in fat and carbohydrate (CHO) oxidation during moderate intensity continuous exercise in persons with SCI and able-bodied adults (AB). DESIGN Repeated measures, within-subjects study. SETTING University laboratory in San Diego, CA. PARTICIPANTS Nine men and women with SCI (age and time since injury = 32 ± 11 yr and 7 ± 6 yr) and 10 AB adults (age = 25 ± 8 yr). INTERVENTIONS To assess peak oxygen uptake (VO2peak) and peak power output (PPO), participants performed progressive arm ergometry to volitional exhaustion. Subsequently, they completed 25 min of continuous exercise at 45%PPO. OUTCOME MEASURES Respiratory exchange ratio (RER), fat and CHO oxidation, and blood lactate concentration (BLa) were assessed. RESULTS Data showed a similar RER (P = 0.98) during exercise in SCI (0.97 ± 0.04) versus AB (0.97 ± 0.03) reflecting high CHO use and no differences in BLa (3.5 ± 1.1 and 3.0 ± 0.9 vs. mM, P = 0.56) or fat and CHO oxidation between groups (P > 0.05). However, participants with SCI exercised at a higher relative intensity (P < 0.01, 84 ± 7 vs. 75 ± 7%HRpeak) versus AB. CONCLUSION Data confirm high reliance on CHO during arm ergometry in persons with SCI. To better compare substrate utilization to AB adults, we recommend that exercise be prescribed according to peak heart rate due to differences in cardiorespiratory fitness between groups.
Collapse
Affiliation(s)
| | - David W. McMillan
- Miller School of Medicine, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
6
|
Batrakoulis A, Jamurtas AZ, Metsios GS, Perivoliotis K, Liguori G, Feito Y, Riebe D, Thompson WR, Angelopoulos TJ, Krustrup P, Mohr M, Draganidis D, Poulios A, Fatouros IG. Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes 2022; 15:e008243. [PMID: 35477256 DOI: 10.1161/circoutcomes.121.008243] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although regular exercise is recommended for preventing and treating overweight/obesity, the most effective exercise type for improving cardiometabolic health in individuals with overweight/obesity remains largely undecided. This network meta-analysis aimed to evaluate and rank the comparative efficacy of 5 exercise modalities on cardiometabolic health measures in individuals with overweight/obesity. METHODS A database search was conducted in MEDLINE, Embase, Scopus, and Web of Science from inception up to September 2020. The review focused on randomized controlled trials involving exercise interventions consisting of continuous endurance training, interval training, resistance training, combined aerobic and resistance training (combined training), and hybrid-type training. Exercise interventions aimed to improve somatometric variables, body composition, lipid metabolism, glucose control, blood pressure, cardiorespiratory fitness, and muscular strength. The Cochrane risk of bias tool was used to evaluate eligible studies. A random-effects network meta-analysis was performed within a frequentist framework. The intervention ranking was carried out using a Bayesian model where mean and SD were equal to the respective frequentist estimates. RESULTS A total of 4331 participants (59% female; mean age: 38.7±12.3 years) from 81 studies were included. Combined training was the most effective modality and hybrid-type training the second most effective in improving cardiometabolic health-related outcomes in these populations suggesting a higher efficacy for multicomponent exercise interventions compared to single-component modalities, that is, continuous endurance training, interval training, and resistance training. A subgroup analysis revealed that the effects from different exercise types were mediated by gender. CONCLUSIONS These findings corroborate the latest guidelines on exercise for individuals with overweight/obesity highlighting the importance of a multicomponent exercise approach to improve cardiometabolic health. Physicians and healthcare professionals should consider prescribing multicomponent exercise interventions to adults with overweight/obesity to maximize clinical outcomes. REGISTRATION URL: https://www.crd.york.ac.uk/PROSPERO/; Unique identifier: CRD42020202647.
Collapse
Affiliation(s)
- Alexios Batrakoulis
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Georgios S Metsios
- Department of Nutrition and Dietetics, University of Thessaly, Trikala, Greece (G.S.M.).,Russells Hall Hospital, Rheumatology, Dudley Group NHS Foundation Trust, Dudley, United Kingdom (G.S.M.).,Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom (G.S.M.)
| | | | - Gary Liguori
- College of Health Sciences, University of Rhode Island, Kingston (G.L., D.R.)
| | - Yuri Feito
- American College of Sports Medicine, Indianapolis, IN (Y.F.)
| | - Deborah Riebe
- College of Health Sciences, University of Rhode Island, Kingston (G.L., D.R.)
| | - Walter R Thompson
- College of Education and Human Development, Georgia State University, Atlanta (W.R.T.)
| | - Theodore J Angelopoulos
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington (T.J.A.)
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics (P.K.), University of Southern Denmark, Odense.,Section of Sport and Health Sciences and Danish Institute for Advanced Study (DIAS) (P.K.), University of Southern Denmark, Odense.,Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, United Kingdom (P.K.)
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics (M.M.), University of Southern Denmark, Odense.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn (M.M.)
| | - Dimitrios Draganidis
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Athanasios Poulios
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| | - Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece (A.B., A.Z.J., D.D., A.P., I.G.F.)
| |
Collapse
|
7
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
8
|
Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: implications for metabolic health and sports performance. Eur J Appl Physiol 2022; 122:1773-1795. [PMID: 35362801 DOI: 10.1007/s00421-022-04936-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
The maximal fat oxidation rate (MFO) assessed during a graded exercise test is a remarkable physiological indicator associated with metabolic flexibility, body weight loss and endurance performance. The present review considers existing biomarkers related to MFO, highlighting the validity of maximal oxygen uptake and free fatty acid availability for predicting MFO in athletes and healthy individuals. Moreover, we emphasize the role of different key enzymes and structural proteins that regulate adipose tissue lipolysis (i.e., triacylglycerol lipase, hormone sensitive lipase, perilipin 1), fatty acid trafficking (i.e., fatty acid translocase cluster of differentiation 36) and skeletal muscle oxidative capacity (i.e., citrate synthase and mitochondrial respiratory chain complexes II-V) on MFO variation. Likewise, we discuss the association of MFO with different polymorphism on the ACE, ADRB3, AR and CD36 genes, identifying prospective studies that will help to elucidate the mechanisms behind such associations. In addition, we highlight existing evidence that contradict the paradigm of a higher MFO in women due to ovarian hormones activity and highlight current gaps regarding endocrine function and MFO relationship.
Collapse
|
9
|
Guedjati M, Silini S. Effets d’un réentraînement dans la zone du LIPOXmax sur la composition corporelle de femmes obèses d’âge périménopausique. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Astorino TA, De Revere JL. Effect of Ethnicity on Changes in Fat and Carbohydrate Oxidation in Response to Short-Term High Intensity Interval Training (HIIT): A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084314. [PMID: 33921694 PMCID: PMC8072605 DOI: 10.3390/ijerph18084314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
This study compared changes in substrate metabolism with high intensity interval training (HIIT) in women of different ethnicities. Twelve Caucasian (C) and ten Hispanic women (H) (age = 24 ± 5 yr) who were inactive completed nine sessions of HIIT at 85 percent peak power output (%PPO). Pre-training, changes in fat oxidation (FOx) and carbohydrate oxidation (CHOOx) during progressive cycling were measured on two days to compute the minimum difference (MD). This test was repeated after the last training session. Between baseline tests, estimates of FOx and CHOOx were not different (p > 0.05) and were highly related (intraclass correlation coefficient equal to 0.72 to 0.88), although the coefficient of variation of maximal fat oxidation (MFO) was equal to 30%. Training significantly increased MFO (p = 0.03) in C (0.19 ± 0.06 g/min to 0.21 ± 0.06 g/min, d = 0.66) and H (0.16 ± 0.03 g/min to 0.19 ± 0.03 g/min, d = 1.3) that was similar (p = 0.92) between groups. There was a significant interaction for FOx (p = 0.003) as it was only increased in H versus C, although both groups exhibited reduced CHO oxidation (p = 0.002) with training. Use of MD revealed that only 3 of 22 women show meaningful increases in MFO (>0.08 g/min). The preliminary data reveals that a small dose of low-volume HIIT does not alter fat and CHO oxidation and there is little effect of ethnicity on the response to training.
Collapse
|
11
|
Chrzanowski-Smith OJ, Edinburgh RM, Smith E, Thomas MP, Walhin JP, Koumanov F, Williams S, Betts JA, Gonzalez JT. Resting skeletal muscle PNPLA2 (ATGL) and CPT1B are associated with peak fat oxidation rates in men and women but do not explain observed sex differences. Exp Physiol 2021; 106:1208-1223. [PMID: 33675111 DOI: 10.1113/ep089431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the relationship between proteins in skeletal muscle and adipose tissue determined at rest and at peak rates of fat oxidation in men and women? What is the main finding and its importance? The resting contents of proteins in skeletal muscle involved in triglyceride hydrolysis and mitochondrial lipid transport were more strongly associated with peak fat oxidation rates than proteins related to lipid transport or hydrolysis in adipose tissue. Although females displayed higher relative rates of fat oxidation than males, this was not explained by the proteins measured in this study, suggesting that other factors determine sex differences in fat metabolism. ABSTRACT We explored key proteins involved in fat metabolism that might be associated with peak fat oxidation (PFO) and account for sexual dimorphism in fuel metabolism during exercise. Thirty-six healthy adults [15 women; 40 ± 11 years of age; peak oxygen consumption 42.5 ± 9.5 ml (kg body mass)-1 min-1 ; mean ± SD] completed two exercise tests to determine PFO via indirect calorimetry. Resting adipose tissue and/or skeletal muscle biopsies were obtained to determine the adipose tissue protein content of PLIN1, ABHD5 (CGI-58), LIPE (HSL), PNPLA2 (ATGL), ACSL1, CPT1B and oestrogen receptor α (ERα) and the skeletal muscle protein content of FABP 3 (FABPpm), PNPLA2 (ATGL), ACSL1, CTP1B and ESR1 (ERα). Moderate strength correlations were found between PFO [in milligrams per kilogram of fat-free mass (FFM) per minute] and the protein content of PNPLA2 (ATGL) [rs = 0.41 (0.03-0.68), P < 0.05] and CPT1B [rs = 0.45 (0.09-0.71), P < 0.05] in skeletal muscle. No other statistically significant bivariate correlations were found consistently. Females had a greater relative PFO than males [7.1 ± 1.9 vs. 4.5 ± 1.3 and 7.3 ± 1.7 vs. 4.8 ± 1.2 mg (kg FFM)-1 min-1 in the adipose tissue (n = 14) and skeletal muscle (n = 12) subgroups, respectively (P < 0.05)]. No statistically significant sex differences were found in the content of these proteins. The regulation of PFO might involve processes relating to intramyocellular triglyceride hydrolysis and mitochondrial fatty acid transport, and adipose tissue is likely to play a more minor role than muscle. Sex differences in fat metabolism are likely to be attributable to factors other than the resting content of proteins in skeletal muscle and adipose tissue relating to triglyceride hydrolysis and fatty acid transport.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Philippe Walhin
- Department for Health, University of Bath, Bath, UK.,Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Francoise Koumanov
- Department for Health, University of Bath, Bath, UK.,Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | | | - James A Betts
- Department for Health, University of Bath, Bath, UK.,Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Javier T Gonzalez
- Department for Health, University of Bath, Bath, UK.,Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| |
Collapse
|
12
|
Amaro-Gahete FJ, Ponce-González JG, Corral-Pérez J, Velázquez-Díaz D, Lavie CJ, Jiménez-Pavón D. Effect of a 12-Week Concurrent Training Intervention on Cardiometabolic Health in Obese Men: A Pilot Study. Front Physiol 2021; 12:630831. [PMID: 33643072 PMCID: PMC7905165 DOI: 10.3389/fphys.2021.630831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the effects of a 12-week concurrent training intervention on cardiometabolic health in obese men. Twelve obese men (42.5 ± 5.3 years old) participated in the current 12−week randomized controlled trial with a parallel group design. The participants were randomly assigned to a concurrent training group or to a no-exercise control group. Anthropometry and body composition assessment were determined by electrical bio-impedance. Blood samples were obtained and a cardiometabolic risk Z-Score was calculated. Energy metabolism-related parameters [i.e., resting metabolic rate (RMR), respiratory quotient (RQ), and substrate oxidation in both resting conditions and during exercise] were determined by indirect calorimetry. Echocardiographic studies were performed using an ultrasound system equipped with a transducer to measure cardiac function. A significant decrease of weight (Δ = −4.21 kg; i.e., primary outcome), body mass index (Δ = −1.32 kg/m2), fat mass (FM; Δ = −3.27 kg), blood pressure (BP; Δ = −10.81 mmHg), and cardiometabolic risk Z-Score (Δ = −0.39) was observed in the exercise group compared with the control group (all P < 0.05), while no significant changes were noted in waist circumference (WC), lean mass (LM), bone mineral content, glycemic and lipid profiles, liver function, nor in energy metabolism-related parameters (all P > 0.1). Moreover, a significant increment of left ventricular (LV) end diastolic diameter (Δ = −4.35 mm) was observed in the exercise group compared with the control group (P = 0.02). A 12-week concurrent training intervention is an effective strategy to induce weight and fat loss with simultaneous reductions of BP and cardiometabolic risk, and improving cardiac function in obese men.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262 Research group, Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jesús G Ponce-González
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Juan Corral-Pérez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Daniel Velázquez-Díaz
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, United States
| | - David Jiménez-Pavón
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| |
Collapse
|
13
|
Jia Q, Morgan-Bathke ME, Jensen MD. Adipose tissue macrophage burden, systemic inflammation, and insulin resistance. Am J Physiol Endocrinol Metab 2020; 319:E254-E264. [PMID: 32484712 PMCID: PMC7473914 DOI: 10.1152/ajpendo.00109.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue inflammation, as defined by macrophage accumulation, is proposed to cause insulin resistance and systemic inflammation. Because the strength of this relationship for humans is unclear, we tested whether adipose tissue macrophage (ATM) burden is correlated with these health indicators. Using immunohistochemistry, we measured abdominal subcutaneous CD68+ (total ATM), CD14+ (proinflammatory/M1), and CD206+ (anti-inflammatory/M2) ATM in 97 volunteers (BMI 20-38 kg/m2, in addition to body composition, adipocyte size, homeostasis model assessment of insulin resistance, ADIPO-IR, adipose tissue insulin resistance measured by palmitate, plasma lipids, TNF, and IL-6 concentrations. There were several significant univariate correlations between metabolic parameters to IL-6 and ATM per 100 adipocytes, but not ATM per gram tissue; adipocyte size was a confounding variable. We used matching strategies and multivariate regression analyses to investigate the relationships between ATM and inflammatory/metabolic parameters independent of adipocyte size. Matching approaches revealed that the groups discordant for CD206 but concordant for adipocyte size had significantly different fasting insulin and IL-6 concentrations. However, groups discordant for adipocyte size but concordent for ATM differeded in that visceral fat, plasma triglyceride, glucose, and TNF concentrations were greater in those with large adipocytes. Multivariate regression analysis indicated that indexes of insulin resistance and fasting triglycerides were predicted by body composition; the predictive value of ATM per 100 adipocytes or per gram tissue was variable between males and females. We conclude that the relationship between ATM burden and metabolic/inflammatory variables is confounded by adipocyte size/body composition and that ATM do not predict insulin resistance, systemic inflammation, or dyslipidemia. ATM may primarily play a role in tissue remodeling rather than in metabolic pathology.
Collapse
Affiliation(s)
- Qingyi Jia
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maria E Morgan-Bathke
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
- Nutrition and Dietetics Department, Viterbo University, La Crosse, Wisconsin
| | | |
Collapse
|
14
|
Chrzanowski-Smith OJ, Edinburgh RM, Thomas MP, Haralabidis N, Williams S, Betts JA, Gonzalez JT. The day-to-day reliability of peak fat oxidation and FAT MAX. Eur J Appl Physiol 2020; 120:1745-1759. [PMID: 32488584 PMCID: PMC7340634 DOI: 10.1007/s00421-020-04397-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/16/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Prior studies exploring the reliability of peak fat oxidation (PFO) and the intensity that elicits PFO (FATMAX) are often limited by small samples. This study characterised the reliability of PFO and FATMAX in a large cohort of healthy men and women. METHODS Ninety-nine adults [49 women; age: 35 (11) years; [Formula: see text]O2peak: 42.2 (10.3) mL·kg BM-1·min-1; mean (SD)] completed two identical exercise tests (7-28 days apart) to determine PFO (g·min-1) and FATMAX (%[Formula: see text]O2peak) by indirect calorimetry. Systematic bias and the absolute and relative reliability of PFO and FATMAX were explored in the whole sample and sub-categories of: cardiorespiratory fitness, biological sex, objectively measured physical activity levels, fat mass index (derived by dual-energy X-ray absorptiometry) and menstrual cycle status. RESULTS No systematic bias in PFO or FATMAX was found between exercise tests in the entire sample (- 0.01 g·min-1 and 0%[Formula: see text]O2peak, respectively; p > 0.05). Absolute reliability was poor [within-subject coefficient of variation: 21% and 26%; typical errors: ± 0.06 g·min-1 and × / ÷ 1.26%[Formula: see text]O2peak; 95% limits of agreement: ± 0.17 g·min-1 and × / ÷ 1.90%[Formula: see text]O2peak, respectively), despite high (r = 0.75) and moderate (r = 0.45) relative reliability for PFO and FATMAX, respectively. These findings were consistent across all sub-groups. CONCLUSION Repeated assessments are required to more accurately determine PFO and FATMAX.
Collapse
Affiliation(s)
| | | | - Mark P. Thomas
- Department for Health, University of Bath, Bath, BA2 7AY UK
| | | | - Sean Williams
- Department for Health, University of Bath, Bath, BA2 7AY UK
| | - James A. Betts
- Department for Health, University of Bath, Bath, BA2 7AY UK
| | | |
Collapse
|
15
|
Amaro‐Gahete FJ, Acosta FM, Migueles JH, Ponce González JG, Ruiz JR. Association of sedentary and physical activity time with maximal fat oxidation during exercise in sedentary adults. Scand J Med Sci Sports 2020; 30:1605-1614. [DOI: 10.1111/sms.13696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Francisco J. Amaro‐Gahete
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group Department of Physical and Sports Education Faculty of Sports Science University of Granada Granada Spain
- EFFECTS‐262 Research Group Department of Medical Physiology School of Medicine University of Granada Granada Spain
| | - Francisco M. Acosta
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group Department of Physical and Sports Education Faculty of Sports Science University of Granada Granada Spain
| | - Jairo H. Migueles
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group Department of Physical and Sports Education Faculty of Sports Science University of Granada Granada Spain
| | - Jesús G. Ponce González
- MOVE‐IT Research Group and Department of Physical Education Faculty of Education Sciences University of Cádiz Cádiz Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit Puerta del Mar University Hospital of Cádiz Cádiz Spain
| | - Jonatan R. Ruiz
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group Department of Physical and Sports Education Faculty of Sports Science University of Granada Granada Spain
| |
Collapse
|
16
|
Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Sanchez-Delgado G, Ruiz JR, Castillo MJ. Metabolic rate in sedentary adults, following different exercise training interventions: The FIT-AGEING randomized controlled trial. Clin Nutr 2020; 39:3230-3240. [PMID: 32089371 DOI: 10.1016/j.clnu.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 02/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS This study compares the influence of different exercise training programs on basal metabolic rate (BMR) and fat oxidation, in basal conditions (BFox) and during exercise (MFO), in sedentary, middle-aged adults. METHODS The study subjects of this 12 week-long, randomised controlled trial, were 71 middle-aged adults (age 53.5 ± 4.9 years; 52% women). Subjects were randomly assigned to one of the following groups: (1) no exercise, (2) concurrent training based on international physical activity recommendations (PAR group), (3) high intensity interval training (HIIT group), and (4) high intensity interval training plus whole-body electromyostimulation (HIIT + EMS group). Subject BMR, BFox and MFO were determined by indirect calorimetry before and after the intervention. RESULTS The HIIT + EMS subjects showed significant increases in BFox following the intervention compared with the control group (all P = 0.043); no such differences were seen in the PAR and HIIT compared with the control group (all P ≥ 0.1). A significant increase in post-intervention MFO was noted for the HIIT and HIIT + EMS group compared to the non-exercise control group (P < 0.05); no such difference was seen in the PAR group compared to the control group (all P ≥ 0.05). CONCLUSIONS Twelve weeks of high intensity interval training plus whole-body electromyostimulation may increase the BFox and MFO of middle-aged sedentary adults. These findings have important clinical implications; a well-designed high-intensity interval training program plus whole-body electromyostimulation might be followed to help combat the appearance of chronic metabolic diseases characterized by metabolic inflexibility in middle-aged sedentary adults, though it will be necessary to determine how long the effects last.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain; PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain.
| | - Alejandro De-la-O
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Lucas Jurado-Fasoli
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Pennington Biomedical Research Center, LA USA
| | - Jonatan R Ruiz
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Manuel J Castillo
- EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Spain
| |
Collapse
|
17
|
Amaro-Gahete FJ, Sanchez-Delgado G, Alcantara JM, Martinez-Tellez B, Acosta FM, Helge JW, Ruiz JR. Impact of data analysis methods for maximal fat oxidation estimation during exercise in sedentary adults. Eur J Sport Sci 2019; 19:1230-1239. [DOI: 10.1080/17461391.2019.1595160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco J. Amaro-Gahete
- EFFECTS-262 Research group, Departament of Physiology, Faculty of Medicine, University of Granada, Granada Spain
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Juan M.A. Alcantara
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Borja Martinez-Tellez
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
- Department of Medicine, division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Francisco M. Acosta
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| | - Jørn W. Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R. Ruiz
- PROmoting FITness and Health through physical activity research group (PROFITH), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada
| |
Collapse
|
18
|
Amaro-Gahete FJ, Sanchez-Delgado G, Ruiz JR. Commentary: Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:1460. [PMID: 30405428 PMCID: PMC6201563 DOI: 10.3389/fphys.2018.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Francisco J Amaro-Gahete
- Departament of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R Ruiz
- PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Popov DV. Adaptation of Skeletal Muscles to Contractile Activity of Varying Duration and Intensity: The Role of PGC-1α. BIOCHEMISTRY (MOSCOW) 2018; 83:613-628. [DOI: 10.1134/s0006297918060019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:599. [PMID: 29875697 PMCID: PMC5974542 DOI: 10.3389/fphys.2018.00599] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
21
|
Dandanell S, Husted K, Amdisen S, Vigelsø A, Dela F, Larsen S, Helge JW. Influence of maximal fat oxidation on long-term weight loss maintenance in humans. J Appl Physiol (1985) 2017; 123:267-274. [DOI: 10.1152/japplphysiol.00270.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/29/2022] Open
Abstract
Impaired maximal fat oxidation has been linked to obesity and weight regain after weight loss. The aim was to investigate the relationship between maximal fat oxidation (MFO) and long-term weight loss maintenance. Eighty subjects [means (SD): age, 36(13) yrs; BMI, 38(1) kg/m2] were recruited from a total of 2,420 former participants of an 11- to 12-wk lifestyle intervention. Three groups were established based on percent weight loss at follow-up [5.3(3.3) yr]: clinical weight loss maintenance (CWL), >10% weight loss; moderate weight loss (MWL), 1–10% weight loss; and weight regain (WR). Body composition (dual X-ray absorptiometry) and fat oxidation (indirect calorimetry) during incremental exercise were measured at follow-up. Blood and a muscle biopsy were sampled. At follow-up, a U-shaped parabolic relationship between MFO and percent weight loss was observed ( r = 0.448; P < 0.001). Overall differences between CWL, MWL, and WR were observed in MFO (mean [95% confidence interval], in g/min, respectively: 0.46 [0.41–0.52]; 0.32 [0.27–0.38]; 0.45 [0.38–0.51]; P = 0.002), maximal oxygen uptake (V̇o2max, in ml·min−1·FFM−1, respectively; 49 [46–51]; 43 [40–47]; 41 [39–44]; P = 0.007), HAD-activity (in µmol·g−1·min−1, respectively: 123 [113–133]; 104 [91–118]; 97 [88–105]; P < 0.001), muscle protein content of CD36 (in AU, respectively: 1.1 [1.0–1.2]; 0.9 [0.8–1.0]; 0.9 [0.8–0.9]; P = 0.008) and FABPpm (in AU, respectively, 1.0 [0.8–1.2]; 0.7 [0.5–0.8]; 0.7 [0.5–0.9]; P = 0.008), body fat (in %, respectively: 33 [29–38]; 42 [38–46]; 52 [49–55]; P < 0.001), and plasma triglycerides (in mM, respectively: 0.8 [0.7–1.0]; 1.3 [0.9–1.7]; 1.6 [1.0–2.1]; P = 0.013). CWL and WR both had higher MFO compared with MWL, but based on different mechanisms. CWL displayed higher V̇o2max and intramuscular capacity for fat oxidation, whereas abundance of lipids at whole-body level and in plasma was higher in WR. NEW & NOTEWORTHY Impaired maximal fat oxidation has been linked to obesity and weight regain after weight loss. Noteworthy, maximal fat oxidation was equally high after clinical weight loss maintenance and weight regain compared with moderate weight loss. A high maximal fat oxidation after clinical weight loss maintenance was related to higher maximal oxygen updake, content of key proteins involved in transport of lipids across the plasma membrane and β-oxidation. In contrast, a high maximal fat oxidation after weight regain was related to higher availability of lipids, i.e., general adiposity and plasma concentration of triglycerides.
Collapse
Affiliation(s)
- Sune Dandanell
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
- Department of Physiotherapy and Occupational Therapy, Metropolitan University College, Copenhagen, Denmark; and
| | - Karina Husted
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
- Department of Physiotherapy and Occupational Therapy, Metropolitan University College, Copenhagen, Denmark; and
| | - Signe Amdisen
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Vigelsø
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Department of Biomedical Sciences, Center for Healthy Aging, XLab, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Dandanell S, Præst CB, Søndergård SD, Skovborg C, Dela F, Larsen S, Helge JW. Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity. Appl Physiol Nutr Metab 2017; 42:405-412. [PMID: 28177732 DOI: 10.1139/apnm-2016-0518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (FatMax) are commonly determined by indirect calorimetry during graded exercise tests in both obese and normal-weight individuals. However, no protocol has been validated in individuals with obesity. Thus, the aims were to develop a graded exercise protocol for determination of FatMax in individuals with obesity, and to test validity and inter-method reliability. Fat oxidation was assessed over a range of exercise intensities in 16 individuals (age: 28 (26-29) years; body mass index: 36 (35-38) kg·m-2; 95% confidence interval) on a cycle ergometer. The graded exercise protocol was validated against a short continuous exercise (SCE) protocol, in which FatMax was determined from fat oxidation at rest and during 10 min of continuous exercise at 35%, 50%, and 65% of maximal oxygen uptake. Intraclass and Pearson correlation coefficients between the protocols were 0.75 and 0.72 and within-subject coefficient of variation (CV) was 5 (3-7)%. A Bland-Altman plot revealed a bias of -3% points of maximal oxygen uptake (limits of agreement: -12 to 7). A tendency towards a systematic difference (p = 0.06) was observed, where FatMax occurred at 42 (40-44)% and 45 (43-47)% of maximal oxygen uptake with the graded and the SCE protocol, respectively. In conclusion, there was a high-excellent correlation and a low CV between the 2 protocols, suggesting that the graded exercise protocol has a high inter-method reliability. However, considerable intra-individual variation and a trend towards systematic difference between the protocols reveal that further optimization of the graded exercise protocol is needed to improve validity.
Collapse
Affiliation(s)
- Sune Dandanell
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
- b Department for Physiotherapy and Occupational Therapy, Metropolitan University College, Sigurdsgade 26, DK-2200 Copenhagen, Denmark
| | - Charlotte Boslev Præst
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
- b Department for Physiotherapy and Occupational Therapy, Metropolitan University College, Sigurdsgade 26, DK-2200 Copenhagen, Denmark
| | - Stine Dam Søndergård
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| | - Camilla Skovborg
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| | - Flemming Dela
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
- c Department of Geriatrics, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
| | - Steen Larsen
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| | - Jørn Wulff Helge
- a Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Science, Xlab, University of Copenhagen, Blegdamsvej 3, DK-2200, Denmark
| |
Collapse
|
23
|
MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol 2016; 595:2915-2930. [PMID: 27748956 DOI: 10.1113/jp273196] [Citation(s) in RCA: 636] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training.
Collapse
Affiliation(s)
- Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
MacInnis MJ, Zacharewicz E, Martin BJ, Haikalis ME, Skelly LE, Tarnopolsky MA, Murphy RM, Gibala MJ. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J Physiol 2016; 595:2955-2968. [PMID: 27396440 DOI: 10.1113/jp272570] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS A classic unresolved issue in human integrative physiology involves the role of exercise intensity, duration and volume in regulating skeletal muscle adaptations to training. We employed counterweighted single-leg cycling as a unique within-subject model to investigate the role of exercise intensity in promoting training-induced increases in skeletal muscle mitochondrial content. Six sessions of high-intensity interval training performed over 2 weeks elicited greater increases in citrate synthase maximal activity and mitochondrial respiration compared to moderate-intensity continuous training matched for total work and session duration. These data suggest that exercise intensity, and/or the pattern of contraction, is an important determinant of exercise-induced skeletal muscle remodelling in humans. ABSTRACT We employed counterweighted single-leg cycling as a unique model to investigate the role of exercise intensity in human skeletal muscle remodelling. Ten young active men performed unilateral graded-exercise tests to measure single-leg V̇O2, peak and peak power (Wpeak ). Each leg was randomly assigned to complete six sessions of high-intensity interval training (HIIT) [4 × (5 min at 65% Wpeak and 2.5 min at 20% Wpeak )] or moderate-intensity continuous training (MICT) (30 min at 50% Wpeak ), which were performed 10 min apart on each day, in an alternating order. The work performed per session was matched for MICT (143 ± 8.4 kJ) and HIIT (144 ± 8.5 kJ, P > 0.05). Post-training, citrate synthase (CS) maximal activity (10.2 ± 0.8 vs. 8.4 ± 0.9 mmol kg protein-1 min-1 ) and mass-specific [pmol O2 •(s•mg wet weight)-1 ] oxidative phosphorylation capacities (complex I: 23.4 ± 3.2 vs. 17.1 ± 2.8; complexes I and II: 58.2 ± 7.5 vs. 42.2 ± 5.3) were greater in HIIT relative to MICT (interaction effects, P < 0.05); however, mitochondrial function [i.e. pmol O2 •(s•CS maximal activity)-1 ] measured under various conditions was unaffected by training (P > 0.05). In whole muscle, the protein content of COXIV (24%), NDUFA9 (11%) and mitofusin 2 (MFN2) (16%) increased similarly across groups (training effects, P < 0.05). Cytochrome c oxidase subunit IV (COXIV) and NADH:ubiquinone oxidoreductase subunit A9 (NDUFA9) were more abundant in type I than type II fibres (P < 0.05) but training did not increase the content of COXIV, NDUFA9 or MFN2 in either fibre type (P > 0.05). Single-leg V̇O2, peak was also unaffected by training (P > 0.05). In summary, single-leg cycling performed in an interval compared to a continuous manner elicited superior mitochondrial adaptations in human skeletal muscle despite equal total work.
Collapse
Affiliation(s)
- Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Evelyn Zacharewicz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brian J Martin
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maria E Haikalis
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Ponce-González JG, Rodríguez-Garcia L, Losa-Reyna J, Guadalupe-Grau A, Rodriguez-Gonzalez FG, Díaz-Chico BN, Dorado C, Serrano-Sanchez JA, Calbet JAL. Androgen receptor gene polymorphism influence fat accumulation: A longitudinal study from adolescence to adult age. Scand J Med Sci Sports 2015; 26:1313-1320. [PMID: 26634957 DOI: 10.1111/sms.12587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2015] [Indexed: 01/08/2023]
Abstract
To determine the influence of androgen receptor CAG and GGN repeat polymorphisms on fat mass and maximal fat oxidation (MFO), CAG and GGN repeat lengths were measured in 128 young boys, from which longitudinal data were obtained in 45 of them [mean ± SD: 12.8 ± 3.6 years old at recruitment, and 27.0 ± 4.8 years old at adult age]. Subjects were grouped as CAG short (CAGS ) if harboring repeat lengths ≤ 21, the rest as CAG long (CAGL ); and GGN short (GGNS ) if GGN repeat lengths ≤ 23, or long if > 23 (GGNL ). CAGS and GGNS were associated with lower adiposity than CAGL or GGNL (P < 0.05). There was an association between the logarithm of CAG repeats polymorphism and the changes of body mass (r = 0.34, P = 0.03). At adult age, CAGS men showed lower accumulation of total body and trunk fat mass, and lower resting metabolic rate (RMR) and MFO per kg of total lean mass compared with CAGL (P < 0.05). GGNS men also showed lower percentage of body fat (P < 0.05). In summary, androgen receptor CAG and GGN repeat polymorphisms are associated with RMR, MFO, fat mass, and its regional distribution in healthy male adolescents, influencing fat accumulation from adolescence to adult age.
Collapse
Affiliation(s)
- J G Ponce-González
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - L Rodríguez-Garcia
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - J Losa-Reyna
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - A Guadalupe-Grau
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - F G Rodriguez-Gonzalez
- Department of Biochemistry and Physiology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Canary Islands Cancer Research Institute (ICIC), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - B N Díaz-Chico
- Department of Biochemistry and Physiology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Canary Islands Cancer Research Institute (ICIC), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - C Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - J A Serrano-Sanchez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - J A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain. .,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
26
|
Nordby P, Rosenkilde M, Ploug T, Westh K, Feigh M, Nielsen NB, Helge JW, Stallknecht B. Independent effects of endurance training and weight loss on peak fat oxidation in moderately overweight men: a randomized controlled trial. J Appl Physiol (1985) 2015; 118:803-10. [DOI: 10.1152/japplphysiol.00715.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022] Open
Abstract
Endurance training increases peak fat oxidation (PFO) during exercise, but whether this is independent of changes in body weight is not known. The aim of the present study was to investigate the effects of endurance training with or without weight loss or a diet-induced weight loss on PFO and on key skeletal muscle mitochondrial proteins involved in fat oxidation. Sixty moderately overweight, sedentary but otherwise healthy men were randomized to 12 wk of training (T), diet (D), training and increased caloric intake (T-iD), or continuous sedentary control (C). Isoenergetic deficits corresponding to 600 kcal/day were comprised of endurance exercise for T and caloric restriction for D. T-iD completed similar training but was not in 600 kcal deficit because of dietary replacement. PFO and the exercise intensity at which this occurred (FatMax) were measured by a submaximal exercise test and calculated by polynomial regression. As intended by study design, a similar weight loss was observed in T (−5.9 ± 0.7 kg) and D (−5.2 ± 0.8 kg), whereas T-iD (−1.0 ± 0.5 kg) and C (0.1 ± 0.6 kg) remained weight stable. PFO increased to a similar extent with 42% in T [0.16 g/min; 95% confidence intervals (CI): 0.02; 0.30, P = 0.02] and 41% in T-iD (0.16 g/min; 95% CI: 0.01; 0.30, P = 0.04) compared with C, but did not increase in D ( P = 0.96). In addition, the analysis of covariance showed that changes in both PFO (0.10 g/min; 95% CI: 0.03; 0.17, P = 0.03) and FatMax (6.3% V̇o2max; 95% CI: 1.4; 11.3, P < 0.01) were independently explained by endurance training. In conclusion, endurance training per se increases PFO in moderately overweight men.
Collapse
Affiliation(s)
- Pernille Nordby
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| | - Mads Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| | - Thorkil Ploug
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| | - Karina Westh
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| | - Michael Feigh
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| | - Ninna B. Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| | - Jørn W. Helge
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
- Center for Healthy Aging, University of Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Denmark; and
| |
Collapse
|