1
|
van de Kerkhof TM, Bongers CCWG, Périard JD, Eijsvogels TMH. Performance Benefits of Pre- and Per-cooling on Self-paced Versus Constant Workload Exercise: A Systematic Review and Meta-analysis. Sports Med 2024; 54:447-471. [PMID: 37803106 PMCID: PMC10933154 DOI: 10.1007/s40279-023-01940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Exercise in hot environments impairs endurance performance. Cooling interventions can attenuate the impact of heat stress on performance, but the influence of an exercise protocol on the magnitude of performance benefit remains unknown. This meta-analytical review compared the effects of pre- and per-cooling interventions on performance during self-paced and constant workload exercise in the heat. METHODS The study protocol was preregistered at the Open Science Framework ( https://osf.io/wqjb3 ). A systematic literature search was performed in PubMed, Web of Science, and MEDLINE from inception to 9 June, 2023. We included studies that examined the effects of pre- or per-cooling on exercise performance in male individuals under heat stress (> 30 °C) during self-paced or constant workload exercise in cross-over design studies. Risk of bias was assessed using the Cochrane Risk of Bias Tool for randomized trials. RESULTS Fifty-nine studies (n = 563 athletes) were identified from 3300 records, of which 40 (n = 370 athletes) used a self-paced protocol and 19 (n = 193 athletes) used a constant workload protocol. Eighteen studies compared multiple cooling interventions and were included more than once (total n = 86 experiments and n = 832 paired measurements). Sixty-seven experiments used a pre-cooling intervention and 19 used a per-cooling intervention. Average ambient conditions were 34.0 °C [32.3-35.0 °C] and 50.0% [40.0-55.3%] relative humidity. Cooling interventions attenuated the performance decline in hot conditions and were more effective during a constant workload (effect size [ES] = 0.62, 95% confidence interval [CI] 0.44-0.81) compared with self-paced exercise (ES = 0.30, 95% CI 0.18-0.42, p = 0.004). A difference in performance outcomes between protocols was only observed with pre-cooling (ES = 0.74, 95% CI 0.50-0.98 vs ES = 0.29, 95% CI 0.17-0.42, p = 0.001), but not per-cooling (ES = 0.45, 95% CI 0.16-0.74 vs ES = 0.35, 95% CI 0.01-0.70, p = 0.68). CONCLUSIONS Cooling interventions attenuated the decline in performance during exercise in the heat, but the magnitude of the effect is dependent on exercise protocol (self-paced vs constant workload) and cooling type (pre- vs per-cooling). Pre-cooling appears to be more effective in attenuating the decline in exercise performance during a constant workload compared with self-paced exercise protocols, whereas no differences were found in the effectiveness of per-cooling.
Collapse
Affiliation(s)
- Tessa M van de Kerkhof
- Department of Physiology (392), Radboud University Medical Center, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Coen C W G Bongers
- Department of Physiology (392), Radboud University Medical Center, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- School of Sports and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Canberra, ACT, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology (392), Radboud University Medical Center, Radboud Institute for Health Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Iwahashi M, Chaen Y, Yanaoka T, Kurokawa Y, Hasegawa H. Cold water immersion of the hand and forearm during half-time improves intermittent exercise performance in the heat. Front Physiol 2023; 14:1143447. [PMID: 37362443 PMCID: PMC10285063 DOI: 10.3389/fphys.2023.1143447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The present study aimed to investigate the effect of cold water immersion of the hand and forearm during half-time (HT) on intermittent exercise performance and thermoregulation by imitating intermittent athletic games in the heat. In a randomized crossover design, 11 physically active men performed the first half (first and second block) and second half (third and fourth block) intermittent cycling exercise protocol, which consisted of a 5-s maximal power pedalling (body weight × 0.075 kp) every minute separated by 25-s of unloaded pedalling and rest (30 s) in the heat (33°C, 50% relative humidity). The two-halves were separated by a 15-min HT. During HT, the participants were assigned to the CON (sedentary resting) or COOL (immersion of hands and forearms in cold water at 15-17°C) condition. The mean power output in the second half was significantly greater (third and fourth block: p < 0.05) in the COOL than in the CON condition. Moreover, there was a significant decrease in the rectal (0.54 ± 0.17°C, p < 0.001) and mean skin (1.86 ± 0.34°C, p < 0.05) temperatures of the COOL condition during HT. Furthermore, the heart rate (16 ± 7 bpm, p < 0.05) and skin blood flow (40.2 ± 10.5%, p < 0.001) decreased at the end of HT in the COOL condition. In the second half, thermal sensation was more comfortable in the COOL condition (p < 0.001). Cold water immersion of the hand and forearm during HT improved physiological and reduced perceived heat stress. Moreover, it prevented a reduction in intermittent exercise performance in the second half.
Collapse
|
3
|
Jiang D, Yu Q, Liu M, Dai J. Effects of different external cooling placements prior to and during exercise on athletic performance in the heat: A systematic review and meta-analysis. Front Physiol 2023; 13:1091228. [PMID: 36703929 PMCID: PMC9871495 DOI: 10.3389/fphys.2022.1091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nowadays, many high-profile international sport events are often held in warm or hot environments, hence, it is inevitable for these elite athletes to be prepared for the challenges from the heat. Owing to internal cooling may cause gastrointestinal discomfort to athletes, external cooling technique seems to be a more applicable method to deal with thermal stress. Central cooling mainly refers to head, face, neck and torso cooling, can help to reduce skin temperature and relieve thermal perception. Peripheral cooling mainly refers to four limbs cooling, can help to mitigate metabolic heat from muscular contrac to effectively prevent the accumulation of body heat. Hence, we performed a meta-analysis to assess the effectiveness of different external cooling placements on athletic performance in the heat Methods: A literatures search was conducted using Web of Science, MEDLINE and SPORTDiscus until September 2022. The quality and risk of bias in the studies were independently assessed by two researchers. Results: 1,430 articles were initially identified (Web of Science = 775; MEDLINE = 358; SPORTDiscus = 271; Additional records identified through other sources = 26), 60 articles (82 experiments) met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. Central cooling (SMD = 0.43, 95% CI 0.27 to 0.58, p < 0.001) was most effective in improving athletic performance in the heat, followed by central and peripheral cooling (SMD = 0.38, 95% CI 0.23 to 0.54, p < 0.001), AND peripheral cooling (SMD = 0.32, 95% CI 0.07 to 0.57, p = 0.013). For the cooling-promotion effects on different sports types, the ranking order in central cooling was ETE (exercise to exhaustion), TT (time-trial), EWT (exercise within the fixed time or sets), IS (intermittent sprint); the ranking order in peripheral cooling was EWT, TT, ETE and IS; the ranking order in central and peripheral cooling was ETE, IS, EWT and TT. Conclusion: Central cooling appears to be an more effective intervention to enhance performance in hot conditions through improvements of skin temperature and thermal sensation, compared to other external cooling strategies. The enhancement effects of peripheral cooling require sufficient re-warming, otherwise it will be trivial. Although, central and peripheral cooling seems to retain advantages from central cooling, as many factors may influence the effects of peripheral cooling to offset the positive effects from central cooling, the question about whether central and peripheral cooling method is better than an isolated cooling technique is still uncertain and needs more researchs to explore it.
Collapse
Affiliation(s)
- Dongting Jiang
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Qiuyu Yu
- Sports Coaching College, Beijing Sports University, Beijing, China
- Big Ball Sports Center, Hebei Provincial Sports Bureau, Shijiazhuang, China
| | - Meng Liu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Jinjin Dai
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
4
|
De Sousa-De Sousa L, Espinosa HG, Maté-Muñoz JL, Lozano-Estevan MDC, Cerrolaza-Tudanca S, Rozalén-Bustín M, Fernández-Carnero S, García-Fernández P. Effects of Capacitive-Resistive Electric Transfer on Sports Performance in Paralympic Swimmers: A Stopped Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14620. [PMID: 36361500 PMCID: PMC9656992 DOI: 10.3390/ijerph192114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Throughout history a variety of therapeutic tools have been studied as possible enhancers of sports activities. This study proposes the use of Capacitive-Resistive Electric Transfer (CRET) as a performance booster to paralympic athletes, specifically those belonging to the Spanish Paralympic swimming committee. The study was a randomized, single-blind, and observer-blind, crossover clinical trial. Six athletes were randomly assigned to three groups: one treated with CRET (A); a placebo group (B) and a control group (C). The CRET group attended a twenty-minute session before being subjected to pool trials at distances of 50 and 100 m at maximum performance. Measurements were in two dimensions: time in seconds and the Borg scale for perceived exertion. Comparisons between groups were made with respect to distance and the main variables. In the case of perceived exertion, no significant changes were observed in any of the distances; however, in the case of the time variable, a significant difference was observed between Group A vs. Personal Record at 100 m distance (76.3 ± 6.8 vs. 68.4 ± 3.3). The proposed protocol and level of hyperthermia applied suggest refusal of CRET use for the 100-m distance a few minutes before sports practice. Our analysis suggests the need to modify the presented protocol. ClinicalTrials.gov identifier under NCT number: NCT04336007.
Collapse
Affiliation(s)
- Luis De Sousa-De Sousa
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Hugo G. Espinosa
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Jose Luis Maté-Muñoz
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Sara Cerrolaza-Tudanca
- Faculty of Health Sciences, Alfonso X University, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Manuel Rozalén-Bustín
- Faculty of Health Sciences, Alfonso X University, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Samuel Fernández-Carnero
- Physiotherapy and Pain Group, Department of Physiotherapy and Nursing, Alcalá University, 28801 Alcalá de Henares, Spain
| | - Pablo García-Fernández
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Verdegaal ELJMM, Howarth GS, McWhorter TJ, Delesalle CJG. Is Continuous Monitoring of Skin Surface Temperature a Reliable Proxy to Assess the Thermoregulatory Response in Endurance Horses During Field Exercise? Front Vet Sci 2022; 9:894146. [PMID: 35711810 PMCID: PMC9196037 DOI: 10.3389/fvets.2022.894146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperthermia is a performance and welfare issue for exercising horses. The thermoregulatory stressors associated with exercise have typically been estimated by responses in the laboratory. However, monitoring surface skin temperature (T sk ) coincident with core temperature (T c ) has not previously been investigated in horses exercising in the field. We investigated the suitability of monitoring surface T sk as a metric of the thermoregulatory response, and simultaneously investigated its relationship with T c using gastrointestinal (GI) temperature. We evaluated T sk in 13 endurance horses competing during four endurance rides over 40 km (n = 1) or a total of 80 km (n = 12) distance. Following each 40-km loop, the horses were rested for 60 min. T sk and T c were continuously recorded every 15 s by an infrared thermistor sensor located in a modified belt and by telemetric GI pill, respectively, and expressed as mean ± SD. The net area under the curve (AUC) was calculated to estimate the thermoregulatory response to the thermal load of T sk over time (°C × minutes) using the trapezoidal method. The relationship between T sk and T c was assessed using scatterplots, paired t-test or generalized linear model ANOVA (delta T sk ) (n = 8). Ambient temperature ranged from 6.7°C to 18.4°C. No relationship was found between T sk and T c profiles during exercise and recovery periods, and no significant difference between delta T sk results was detected when comparing exercise and rest. However, time to maximum T sk (67 min) was significantly reduced compared to T c (139 min) (p = 0.0004) with a significantly lesser maximum T sk (30.3°C) than T c (39°C) (p = 0.0002) during exercise. Net AUC T sk was 1,164 ± 1,448 and -305 ± 388°C × minutes during periods of exercise and recovery, respectively. We conclude that T sk monitoring does not provide a reliable proxy for the thermoregulatory response and horse welfare, most probably because many factors can modulate T sk without directly affecting T c . Those factors, such as weather conditions, applicable to all field studies can influence the results of T sk in endurance horses. The study also reveals important inter-individual differences in T sk and T c time profiles, emphasizing the importance of an individualized model of temperature monitoring.
Collapse
Affiliation(s)
- Elisabeth-Lidwien J. M. M. Verdegaal
- Equine Health and Performance Centre, University of Adelaide, Adelaide, SA, Australia
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gordon S. Howarth
- Equine Health and Performance Centre, University of Adelaide, Adelaide, SA, Australia
- Gastroenterology Department, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Todd J. McWhorter
- Equine Health and Performance Centre, University of Adelaide, Adelaide, SA, Australia
| | - Catherine J. G. Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
The Effect of Upper-Body Positioning on the Aerodynamic–Physiological Economy of Time-Trial Cycling. Int J Sports Physiol Perform 2021; 16:51-58. [DOI: 10.1123/ijspp.2019-0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Purpose: Cycling time trials (TTs) are characterized by riders’ adopting aerodynamic positions to lessen the impact of aerodynamic drag on velocity. The optimal performance requirements for TTs likely exist on a continuum of rider aerodynamics versus physiological optimization, yet there is little empirical evidence to inform riders and coaches. The aim of the present study was to investigate the relationship between aerodynamic optimization, energy expenditure, heat production, and performance. Methods: Eleven trained cyclists completed 5 submaximal exercise tests followed by a TT. Trials were completed at hip angles of 12° (more horizontal), 16°, 20°, 24° (more vertical), and their self-selected control position. Results: The largest decrease in power output at anaerobic threshold compared with control occurred at 12° (−16 [20] W, P = .03; effect size [ES] = 0.8). There was a linear relationship between upper-body position and heat production (R2 = .414, P = .04) but no change in mean body temperature, suggesting that, as upper-body position and hip angle increase, convective and evaporative cooling also rise. The highest aerodynamic–physiological economy occurred at 12° (384 [53] W·CdA−1·L−1·min−1, ES = 0.4), and the lowest occurred at 24° (338 [28] W·CdA−1·L−1·min−1, ES = 0.7), versus control (367 [41] W·CdA−1·L−1·min−1). Conclusion: These data suggest that the physiological cost of reducing hip angle is outweighed by the aerodynamic benefit and that riders should favor aerodynamic optimization for shorter TT events. The impact on thermoregulation and performance in the field requires further investigation.
Collapse
|
7
|
Rodríguez MÁ, Piedra JV, Sánchez-Fernández M, del Valle M, Crespo I, Olmedillas H. A Matter of Degrees: A Systematic Review of the Ergogenic Effect of Pre-Cooling in Highly Trained Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2952. [PMID: 32344616 PMCID: PMC7215649 DOI: 10.3390/ijerph17082952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
The current systematic review evaluated the effects of different pre-cooling techniques on sports performance in highly-trained athletes under high temperature conditions. PubMed/MEDLINE, EMBASE, Web of Science, CENTRAL, Scopus, and SPORTDiscus databases were searched from inception to December 2019. Studies performing pre-cooling interventions in non-acclimatized highly-trained athletes (>55 mL/kg/min of maximal oxygen consumption) under heat conditions (≥30 °C) were included. The searched reported 26 articles. Pre-cooling techniques can be external (exposure to ice water, cold packs, or cooling clothes), internal (intake of cold water or ice), or mixed. Cooling prior to exercise concluded increases in distance covered (1.5-13.1%), mean power output (0.9-6.9%), time to exhaustion (19-31.9%), work (0.1-8.5%), and mean peak torque (10.4-22.6%), as well as reductions in completion time (0.6-6.5%). Mixed strategies followed by cold water immersion seem to be the most effective techniques, being directly related with the duration of cooling and showing the major effects in prolonged exercise protocols. The present review showed that pre-cooling methods are an effective strategy to increase sports performance in hot environments. This improvement is associated with the body surface exposed and its sensibility, as well as the time of application, obtaining the best results in prolonged physical exercise protocols.
Collapse
Affiliation(s)
- Miguel Ángel Rodríguez
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
| | - José Víctor Piedra
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
| | - Mario Sánchez-Fernández
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
| | - Miguel del Valle
- Department of Cellular Morphology and Biology, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Irene Crespo
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
- Institute of Biomedicine, Universidad de León, 24071 León, Spain
| | - Hugo Olmedillas
- Department of Functional Biology, Universidad de Oviedo, 33006 Oviedo, Spain; (M.Á.R.); (J.V.P.); (M.S.-F.); (I.C.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Griggs KE, Stephenson BT, Price MJ, Goosey-Tolfrey VL. Heat-related issues and practical applications for Paralympic athletes at Tokyo 2020. Temperature (Austin) 2019; 7:37-57. [PMID: 32166104 PMCID: PMC7053936 DOI: 10.1080/23328940.2019.1617030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
International sporting competitions, including the Paralympic Games, are increasingly being held in hot and/or humid environmental conditions. Thus, a greater emphasis is being placed on preparing athletes for the potentially challenging environmental conditions of the host cities, such as the upcoming Games in Tokyo in 2020. However, evidence-based practices are limited for the impairment groups that are eligible to compete in Paralympic sport. This review aims to provide an overview of heat-related issues for Paralympic athletes alongside current recommendations to reduce thermal strain and technological advancements in the lead up to the Tokyo 2020 Paralympic Games. When competing in challenging environmental conditions, a number of factors may contribute to an athlete's predisposition to heightened thermal strain. These include the characteristics of the sport itself (type, intensity, duration, modality, and environmental conditions), the complexity and severity of the impairment and classification of the athlete. For heat vulnerable Paralympic athletes, strategies such as the implementation of cooling methods and heat acclimation can be used to combat the increase in heat strain. At an organizational level, regulations and specific heat policies should be considered for several Paralympic sports. Both the utilization of individual strategies and specific heat health policies should be employed to ensure that Paralympics athletes' health and sporting performance are not negatively affected during the competition in the heat at the Tokyo 2020 Paralympic Games.
Collapse
Affiliation(s)
- Katy E. Griggs
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ben T. Stephenson
- Loughborough Performance Centre, English Institute of Sport, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Michael J. Price
- School of Life Sciences, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Victoria L. Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
9
|
Thomas G, Cullen T, Davies M, Hetherton C, Duncan B, Gerrett N. Independent or simultaneous lowering of core and skin temperature has no impact on self-paced intermittent running performance in hot conditions. Eur J Appl Physiol 2019; 119:1841-1853. [PMID: 31218440 PMCID: PMC6647662 DOI: 10.1007/s00421-019-04173-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/04/2019] [Indexed: 11/30/2022]
Abstract
Purpose To investigate the effects of lowering core (Tgi) and mean skin temperature (Tsk) concomitantly and independently on self-paced intermittent running in the heat. Methods 10 males (30.5 ± 5.8 years, 73.2 ± 14.5 kg, 176.9 ± 8.0 cm, 56.2 ± 6.6 ml/kg/min) completed four randomised 46-min self-paced intermittent protocols on a non-motorised treadmill in 34.4 ± 1.4 °C, 36.3 ± 4.6% relative humidity. 30-min prior to exercise, participants were cooled via either ice slurry ingestion (INT); a cooling garment (EXT); mixed-cooling (ice slurry and cooling garment concurrently) (MIX); or no-cooling (CON). Results At the end of pre-cooling and the start of exercise Tgi were lower during MIX (36.11 ± 1.3 °C) compared to CON (37.6 ± 0.5 °C) and EXT (36.9 ± 0.5 °C, p < 0.05). Throughout pre-cooling Tsk and thermal sensation were lower in MIX compared to CON and INT, but not EXT (p < 0.05). The reductions in thermophysiological responses diminished within 10–20 min of exercise. Despite lowering Tgi, Tsk, body temperature (Tb), and thermal sensation prior to exercise, the distances covered were similar (CON: 6.69 ± 1.08 km, INT: 6.96 ± 0.81 km, EXT: 6.76 ± 0.65 km, MIX 6.87 ± 0.70 km) (p > 0.05). Peak sprint speeds were also similar between conditions (CON: 25.6 ± 4.48 km/h, INT: 25.4 ± 3.6 km/h, EXT: 26.0 ± 4.94 km/h, MIX: 25.6 ± 3.58 km/h) (p > 0.05). Blood lactate, heart rate and RPE were similar between conditions (p > 0.05). Conclusion Lowering Tgi and Tsk prior to self-paced intermittent exercise did not improve sprint, or submaximal running performance. Electronic supplementary material The online version of this article (10.1007/s00421-019-04173-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Thomas
- School of Sport and Exercise Science, University of Worcester, Worcester, UK
| | - T Cullen
- School of Sport and Exercise Science, University of Worcester, Worcester, UK.,Centre for Sport Exercise and Life Sciences, Coventry University, Coventry, UK
| | - M Davies
- School of Sport and Exercise Science, University of Worcester, Worcester, UK
| | - C Hetherton
- School of Sport and Exercise Science, University of Worcester, Worcester, UK
| | - B Duncan
- School of Sport and Exercise Science, University of Worcester, Worcester, UK
| | - N Gerrett
- Faculty of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| |
Collapse
|
10
|
Chaen Y, Onitsuka S, Hasegawa H. Wearing a Cooling Vest During Half-Time Improves Intermittent Exercise in the Heat. Front Physiol 2019; 10:711. [PMID: 31275154 PMCID: PMC6593273 DOI: 10.3389/fphys.2019.00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Endurance and intermittent exercise performance are impaired by high ambient temperatures. Various countermeasures are considered to prevent the decline in exercise performance in the heat, convenient, and practical cooling strategies attracts attention. The purpose of this study was to investigate the effect of wearing a new type of cooling vest which cooled torso and neck during half-time (HT) on intermittent exercise performance that imitated intermittent athletic games. All measurements on the experiments were carried out with the bicycle ergometer. Eight male soccer players performed a familiarization session and two experimental trials of a 2 × 30 min intermittent cycling exercise protocol, which consisted of a 5 s maximal power pedaling (body weight ×0.075 kp) every minutes separated by 25 s unloaded pedaling (80 rpm) and rest (30 s) in the heat (33.0°C; 50% relative humidity). The two trials included cooling-vest condition (VEST) and control condition (CON), and the difference is with or without wearing cooling vest imposed for 15 min at HT. Mean and peak power output, rectal (Tre) and skin temperature (neck, upper back, chest, right upper arm, and thigh), heart rate (HR), deep thigh temperature, rating of perceived exertion (RPE), and thermal comfort (TC) and thermal sensation (TS) were measured. Mean power output at 2nd half was significantly greater (p < 0.05) in VEST (3rd trial: 589 ± 58 W, 4th trial: 584 ± 58 W) than in CON (3rd trial: 561 ± 53 W, 4th trial: 561 ± 53 W). HR were significantly lower in VEST during HT and higher in VEST at the last maximal pedaling (p < 0.05). At the end of HT, neck skin temperature and mean skin temperature were significantly lower in VEST (32.04 ± 1.47°C, 33.76 ± 1.08°C, respectively) than in CON (36.69 ± 0.78°C, 36.14 ± 0.67°C, respectively) (p < 0.05). During 2nd half, TS, TC, and RPE were significantly lower in VEST than in CON (p < 0.05). There was no significant difference in Tre and deep thigh temperature throughout each conditions. These results indicate that wearing a new type of cooling vest during HT significantly improves intermittent exercise performance in the heat with decreased neck and mean skin temperature and improved subjective responses.
Collapse
Affiliation(s)
- Yudai Chaen
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Sumire Onitsuka
- Faculty of Human Health Science, Hiroshima Bunka Gakuen University, Kure, Japan
| | - Hiroshi Hasegawa
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
11
|
Alhadad SB, Tan PMS, Lee JKW. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front Physiol 2019; 10:71. [PMID: 30842739 PMCID: PMC6391927 DOI: 10.3389/fphys.2019.00071] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022] Open
Abstract
Background: A majority of high profile international sporting events, including the coming 2020 Tokyo Olympics, are held in warm and humid conditions. When exercising in the heat, the rapid rise of body core temperature (Tc) often results in an impairment of exercise capacity and performance. As such, heat mitigation strategies such as aerobic fitness (AF), heat acclimation/acclimatization (HA), pre-exercise cooling (PC) and fluid ingestion (FI) can be introduced to counteract the debilitating effects of heat strain. We performed a meta-analysis to evaluate the effectiveness of these mitigation strategies using magnitude-based inferences. Methods: A computer-based literature search was performed up to 24 July 2018 using the electronic databases: PubMed, SPORTDiscus and Google Scholar. After applying a set of inclusion and exclusion criteria, a total of 118 studies were selected for evaluation. Each study was assessed according to the intervention's ability to lower Tc before exercise, attenuate the rise of Tc during exercise, extend Tc at the end of exercise and improve endurance. Weighted averages of Hedges' g were calculated for each strategy. Results: PC (g = 1.01) was most effective in lowering Tc before exercise, followed by HA (g = 0.72), AF (g = 0.65), and FI (g = 0.11). FI (g = 0.70) was most effective in attenuating the rate of rise of Tc, followed by HA (g = 0.35), AF (g = −0.03) and PC (g = −0.46). In extending Tc at the end of exercise, AF (g = 1.11) was most influential, followed by HA (g = −0.28), PC (g = −0.29) and FI (g = −0.50). In combination, AF (g = 0.45) was most effective at favorably altering Tc, followed by HA (g = 0.42), PC (g = 0.11) and FI (g = 0.09). AF (1.01) was also found to be most effective in improving endurance, followed by HA (0.19), FI (−0.16) and PC (−0.20). Conclusion: AF was found to be the most effective in terms of a strategy's ability to favorably alter Tc, followed by HA, PC and lastly, FI. Interestingly, a similar ranking was observed in improving endurance, with AF being the most effective, followed by HA, FI, and PC. Knowledge gained from this meta-analysis will be useful in allowing athletes, coaches and sport scientists to make informed decisions when employing heat mitigation strategies during competitions in hot environments.
Collapse
Affiliation(s)
- Sharifah Badriyah Alhadad
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Pearl M S Tan
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Jason K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
The Threshold Ambient Temperature for the Use of Precooling to Improve Cycling Time-Trial Performance. Int J Sports Physiol Perform 2019; 14:323-330. [PMID: 30160552 DOI: 10.1123/ijspp.2018-0310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE Cycling time-trial performance can be compromised by moderate to high ambient temperatures. It has become commonplace to implement precooling prior to competition to alleviate this performance decline. However, little is known about the ambient temperature threshold above which precooling becomes an effective strategy for enhancing endurance performance. The aim of this study was to investigate the effect of precooling in different environmental temperatures on time-trial (TT) performance. METHODS Trained cyclists completed 2 TTs with (COLD) and without (CON) precooling using an ensemble of ice vest and sleeves in ambient temperatures of 24°C, 27°C, and 35°C. RESULTS TT performance was faster following COLD in both 35°C (6.2%) and 27°C (2.6%; both Ps < .05) but not 24°C (1.2%). Magnitude-based inferential statistics indicate that COLD was very likely beneficial to performance in 35°C, likely beneficial in 27°C, and possibly beneficial in 24°C. Mean power was 2.4%, 2.5%, and 5.6% higher following COLD and considered to be likely beneficial in 24°C and very likely beneficial in 27°C and 35°C. COLD reduced mean skin temperature throughout the warm-up and into the TT in all ambient temperatures (P < .05). Sweat loss was lower following COLD in 24°C and 27°C but not 35°C. There was no effect of COLD on gastrointestinal temperature at any point. CONCLUSIONS Precooling with an ice vest and sleeves is likely to have a positive effect on TT performance at temperatures above 24°C, with a clear relationship between ambient temperature and the magnitude of effect of precooling.
Collapse
|
13
|
Carballo-Leyenda B, Villa JG, López-Satué J, Collado PS, Rodríguez-Marroyo JA. Fractional Contribution of Wildland Firefighters' Personal Protective Equipment on Physiological Strain. Front Physiol 2018; 9:1139. [PMID: 30154736 PMCID: PMC6103002 DOI: 10.3389/fphys.2018.01139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
Activities performed by wildland firefighters are carried out wearing a personal protective equipment (PPE). Although the PPE protects workers from a wide variety of hazards, it may increase their physiological response and limit their performance. The aim of this study was to analyze the effect of the protective clothing (PPC) and the rest of the PPE elements (i.e., helmet, neck shroud, gloves, goggles, and mid-calf leather boots) on the wildland firefighters' thermophysiological response during a moderate-intense exercise. Six male wildland firefighters performed, in a counterbalanced order, a 120 min graded exercise test wearing three different clothing configurations: (i) a traditional short sports gear (SG), (ii) a PPC, and (iii) a complete firefighters' PPE. Trials were conducted on separate days at the same time of the day (12:00-15:00 h) and under climate-controlled conditions (∼30°C and ∼30% relative humidity). Heart rate, respiratory gas exchange, gastrointestinal and skin temperature, blood lactate concentration were recorded throughout the tests. Additionally, parameters of heat balance were estimated. Exercise time was shorter (p < 0.001) wearing the PPE (62.4 ± 13.3 min) than with the PPC (115.5 ± 5.0 min) and SG (118.2 ± 20.7 min). The increment of gastrointestinal temperature with the PPE (1.8 ± 0.3°C) was greater (p < 0.05) than the observed in PPC (1.2 ± 0.6°C) and SG (1.0 ± 0.2°C). The use of PPC increased (p < 0.05) subjects' metabolic demand and skin temperature versus SG during the last 20 min of the test. The sweat retention in the PPE (1,045.7 ± 214.7 g) and PPC (978.3 ± 330.6 g) was significantly higher than that obtained in the SG (510.0 ± 210.0 g). Sweat efficiency decreased (p < 0.05) in the following order: PPE (45.6 ± 18.3%), PPC (64.3 ± 7.8%), and SG (79.3 ± 7.0%). These results highlight the importance of the PPE elements in the subjects' thermal strain. The reduction in the sweat evaporation produced by the PPE, together with the ensemble mass caused a substantial increase in the subjects' thermophysiological response. As a consequence the performance was reduced by ∼50%.
Collapse
Affiliation(s)
- Belén Carballo-Leyenda
- Department of Physical Education and Sports, University of León, León, Spain
- Institute of Biomedicine, University of León, León, Spain
| | - José G. Villa
- Department of Physical Education and Sports, University of León, León, Spain
- Institute of Biomedicine, University of León, León, Spain
| | | | | | - Jose A. Rodríguez-Marroyo
- Department of Physical Education and Sports, University of León, León, Spain
- Institute of Biomedicine, University of León, León, Spain
| |
Collapse
|
14
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018. [PMID: 29441024 DOI: 10.3389/fphys.2018.00029, 10.3389/fpls.2018.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
15
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018; 9:29. [PMID: 29441024 PMCID: PMC5797625 DOI: 10.3389/fphys.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A. MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M. Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
16
|
Imai D, Takeda R, Suzuki A, Naghavi N, Yamashina Y, Ota A, Matsumura S, Yokoyama H, Miyagawa T, Okazaki K. Effects of skin surface cooling before exercise on lactate accumulation in cool environment. Eur J Appl Physiol 2018; 118:551-562. [PMID: 29299665 DOI: 10.1007/s00421-017-3797-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE We assessed whether plasma lactate accumulation increased and the lactate threshold (LT) declined when the skin temperature was lowered by whole body skin surface cooling before exercise in cool, but not temperate, conditions, and whether the lowered LT was associated with sympathetic activation or lowered plasma volume (PV) by cold-induced diuresis. METHODS Ten healthy subjects performed a graded maximal cycling exercise after pre-conditioning under three different conditions for 60 min. Ambient temperature (using an artificial climatic chamber) and water temperature in a water-perfusion suit controlled at 25 and 34 °C in temperate-neutral (Temp-Neut); 25 and 10 °C in temperate-cool (Temp-Cool); and at 10 and 10 °C in cool-cool (Cool-Cool) conditions, respectively. Esophageal (Tes) and skin temperatures were measured; plasma lactate ([Lac]p) and noradrenaline concentrations ([Norad]p), and relative change in PV (%ΔPV) were determined before and after pre-conditioning and during exercise, and LT was determined. RESULTS After pre-conditioning, Tes was not different among trials, whereas the mean skin temperature was lower in Cool-Cool and Temp-Cool than in Temp-Neut (P < 0.001). During exercise, [Lac]p and [Norad]p were higher (P = 0.009 and P < 0.001, respectively) and LT was lower (P = 0.013) in Cool-Cool than in the other trials. The %ΔPV was not different among trials. LT was correlated with [Norad]p during exercise (R = 0.50, P = 0.005). CONCLUSIONS Whole body skin surface cooling before exercise increases lactate accumulation and decreases LT with sympathetic activation when exercise is performed in a cool, but not in a temperate, environment.
Collapse
Affiliation(s)
- Daiki Imai
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Ryosuke Takeda
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Akina Suzuki
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Nooshin Naghavi
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yoshihiro Yamashina
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Akemi Ota
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Shinya Matsumura
- Research Area of Sports Physiology, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Hisayo Yokoyama
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Toshiaki Miyagawa
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Kazunobu Okazaki
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan. .,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.
| |
Collapse
|
17
|
Gerrett N, Jackson S, Yates J, Thomas G. Ice slurry ingestion does not enhance self-paced intermittent exercise in the heat. Scand J Med Sci Sports 2016; 27:1202-1212. [DOI: 10.1111/sms.12744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 01/01/2023]
Affiliation(s)
- N. Gerrett
- Institute of Sport and Exercise Science; University of Worcester; Worcester UK
- Laboratory for Applied Human Physiology; Graduate School of Human Development and Environment; Kobe University; Kobe Japan
| | - S. Jackson
- Institute of Sport and Exercise Science; University of Worcester; Worcester UK
| | - J. Yates
- Institute of Sport and Exercise Science; University of Worcester; Worcester UK
| | - G. Thomas
- Institute of Sport and Exercise Science; University of Worcester; Worcester UK
| |
Collapse
|
18
|
The Effects of Differences in the Timing of Ice Ingestion before Exercise on Endurance Cycling Capacity, Body Temperature and Perceptual Sensation in the Heat*. ACTA ACUST UNITED AC 2016. [DOI: 10.5432/ijshs.201615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Cramer MN, Thompson MW, Périard JD. Thermal and Cardiovascular Strain Mitigate the Potential Benefit of Carbohydrate Mouth Rinse During Self-Paced Exercise in the Heat. Front Physiol 2015; 6:354. [PMID: 26635634 PMCID: PMC4658580 DOI: 10.3389/fphys.2015.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose: To determine whether a carbohydrate mouth rinse can alter self-paced exercise performance independently of a high degree of thermal and cardiovascular strain. Methods: Eight endurance-trained males performed two 40-km cycling time trials in 35°C, 60% RH while swilling a 20-ml bolus of 6.5% maltodextrin (CHO) or a color- and taste-matched placebo (PLA) every 5 km. Heart rate, power output, rectal temperature (Tre), and mean skin temperature (Tsk) were recorded continuously; cardiac output, oxygen uptake (VO2), mean arterial pressure (MAP), and perceived exertion (RPE) were measured every 10 min. Results: Performance time and mean power output were similar between treatments, averaging 63.9 ± 3.2 and 64.3 ± 2.8 min, and 251 ± 23 and 242 ± 18 W in CHO and PLA, respectively. Power output, stroke volume, cardiac output, MAP, and VO2 decreased during both trials, increasing slightly or remaining stable during a final 2-km end-spurt. Tre, Tsk, heart rate, and RPE increased throughout exercise similarly with both treatments. Changes in RPE correlated with those in Tre (P < 0.005) and heart rate (P < 0.001). Conclusions: These findings suggest that carbohydrate mouth rinsing does not improve ~1-h time trial performance in hot-humid conditions, possibly due to a failure in down-regulating RPE, which may be influenced more by severe thermal and cardiovascular strain.
Collapse
Affiliation(s)
- Matthew N Cramer
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa Ottawa, ON, Canada ; Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Martin W Thompson
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Julien D Périard
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia ; Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
20
|
Broekhuijzen I, Hodder S, Hupperets M, Havenith G. Investigating the lower ambient temperature limit for pre-cooling to be beneficial for athletic performance. EXTREME PHYSIOLOGY & MEDICINE 2015. [PMCID: PMC4580863 DOI: 10.1186/2046-7648-4-s1-a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|