1
|
Muchaxo REA, Nooijen CFJ, van der Woude LHV, Janssen TWJ, de Groot S. Is handcycling performance affected by hand function impairment? A cross-sectional study on paracycling classification. Disabil Rehabil Assist Technol 2025:1-9. [PMID: 40319336 DOI: 10.1080/17483107.2025.2492369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE Athletes with hand function impairment are eligible to compete in handcycling using assistive technology designed to compensate for their reduced grip strength. However, there is no evidence suggesting that these athletes perform similarly to their peers without such impairments. This study examined the impact of three simulated hand function impairments on handcycling performance in non-disabled novices. MATERIALS AND METHODS Fourteen non-disabled individuals voluntarily participated in four measurement sessions using a standard handbike. Different hand function levels were simulated in the four sessions (no impairment and three simulated conditions: asymmetry, finger, and wrist impairments) using strapping and gloves to enable cyclic motion. Each session included two 4-minute submaximal handcycling tests (at 30 W and 45 W) and one 20-second isokinetic sprint. Repeated measures ANOVA was used to analyze differences among the hand function conditions in oxygen uptake (VO2sub) during submaximal tests and peak and mean power output (PO (W)) during the sprints. RESULTS No significant differences in VO2sub were observed across the four conditions. During the sprint, participants achieved higher peak PO without impairments compared to the simulated impairments, with values 14-17% higher (p < 0.01). However, no significant differences were found in mean PO, which was 5-9% higher without impairments but did not reach statistical significance (p ≥ 0.05). CONCLUSION The results suggest that individuals without hand function impairments may have an advantage over their peers with impairments during maximal efforts but not during submaximal efforts. However, these findings need to be validated in handcycling athletes.
Collapse
Affiliation(s)
- Rafael E A Muchaxo
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | | | - Lucas H V van der Woude
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas W J Janssen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Amsterdam Institute of Sport Science, Amsterdam, The Netherlands
| | - Sonja de Groot
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Amsterdam Institute of Sport Science, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Mosser N, Norcliffe G, Kruse A. The impact of cycling on the physical and mental health, and quality of life of people with disabilities: a scoping review. Front Sports Act Living 2025; 6:1487117. [PMID: 39835187 PMCID: PMC11743510 DOI: 10.3389/fspor.2024.1487117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Adaptive cycling holds potential for promoting physical and mental health among individuals with disabilities, who often face barriers to traditional cycling and other forms of exercise. This scoping review systematically examines existing scientific literature to assess the effects of adaptive cycling on the physical and mental health of individuals with disabilities. Following a widely recognized methodological scoping review framework, 35 qualitative and quantitative studies were identified through comprehensive database searches and manual screenings. The review highlights the positive impacts of adaptive cycling on cardiovascular fitness, muscle strength, and overall physical well-being, as well as improvements in mental health and quality of life. Despite these benefits, significant research gaps remain, particularly concerning adaptive cycling modalities, such as sociable cycles, chair transporters, and power-assisted bikes, which were underrepresented in the existing literature. This review underscores the need for further studies to provide a comprehensive understanding on the effects of different adaptive cycling modalities. Such studies are essential to improve accessibility and ultimately support the health and social inclusion of individuals with disabilities.
Collapse
Affiliation(s)
- Nina Mosser
- Department of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Glen Norcliffe
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Annika Kruse
- Department of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Antolinez AK, Edwards PF, Holmes MWR, Beaudette SM, Button DC. The Effects of Load, Crank Position, and Sex on the Biomechanics and Performance during an Upper Body Wingate Anaerobic Test. Med Sci Sports Exerc 2024; 56:1422-1436. [PMID: 38537272 DOI: 10.1249/mss.0000000000003436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
INTRODUCTION The upper body Wingate Anaerobic Test (WAnT) is a 30-s maximal effort sprint against a set load (percentage of body mass). However, there is no consensus on the optimal load and no differential values for males and females, even when there are well-studied anatomical and physiological differences in muscle mass for the upper body. Our goal was to describe the effects of load, sex, and crank position on the kinetics, kinematics, and performance of the upper body WAnT. METHODS Eighteen participants (9 females) performed three WAnTs at 3%, 4%, and 5% of body mass. Arm crank forces, 2D kinematics, and performance variables were recorded during each WAnT. RESULTS Our results showed an increase of ~49% effective force, ~36% peak power, ~5° neck flexion, and ~30° shoulder flexion from 3% to 5% load ( P < 0.05). Mean power and anaerobic capacity decreased by 15%, with no changes in fatigue index ( P < 0.05). The positions of higher force efficiency were at 12 and 6 o'clock. The least force efficiency occurred at 3 o'clock ( P < 0.05). Sex differences showed that males produced 97% more effective force and 109% greater mean power than females, with 11.7% more force efficiency ( P < 0.001). Males had 16° more head/neck flexion than females, and females had greater elbow joint variability with 17° more wrist extension at higher loads. Males cycled ~32% faster at 3% versus 5% WAnT load with a 65% higher angular velocity than females. Grip strength, maximal voluntary isometric contraction, mass, and height positively correlated with peak and mean power ( P < 0.001). CONCLUSIONS In conclusion, load, sex, and crank position have a significant impact on performance of the WAnT. These factors should be considered when developing and implementing an upper body WAnT.
Collapse
Affiliation(s)
- Angie K Antolinez
- School of Human Kinetics and Recreation, Memorial University, St. Johns, CANADA
| | - Philip F Edwards
- School of Human Kinetics and Recreation, Memorial University, St. Johns, CANADA
| | - Michael W R Holmes
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, CANADA
| | - Shawn M Beaudette
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, CANADA
| | | |
Collapse
|
4
|
Halloran KM, Focht MDK, Teague A, Peters J, Rice I, Kersh ME. Moving forward: A review of continuous kinetics and kinematics during handcycling propulsion. J Biomech 2023; 159:111779. [PMID: 37703719 DOI: 10.1016/j.jbiomech.2023.111779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Wheelchair users (WCUs) face high rates of shoulder overuse injuries. As exercise is recommended to reduce cardiovascular disease prevalent among WCUs, it is becoming increasingly important to understand the mechanisms behind shoulder soft-tissue injury in WCUs. Understanding the kinetics and kinematics during upper-limb propulsion is the first step toward evaluating soft-tissue injury risk in WCUs. This paper examines continuous kinetic and kinematic data available in the literature. Attach-unit and recumbent handcycling are examined and compared. Athletic modes of propulsion such as recumbent handcycling are important considering the higher contact forces, speed, and power outputs experienced during these activities that could put users at increased risk of injury. Understanding the underlying kinetics and kinematics during various propulsion modes can lend insight into shoulder loading, and therefore injury risk, during these activities and inform future exercise guidelines for WCUs.
Collapse
Affiliation(s)
- Kellie M Halloran
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, United States of America
| | - Michael D K Focht
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, United States of America
| | - Alexander Teague
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States of America
| | - Joseph Peters
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States of America; Disability Resources and Educational Services, University of Illinois Urbana-Champaign, United States of America
| | - Ian Rice
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, United States of America
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, United States of America; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States of America.
| |
Collapse
|
5
|
Muchaxo REA, de Groot S, Kouwijzer I, van der Woude LHV, Nooijen CFJ, Janssen TWJ. Association between upper-limb isometric strength and handcycling performance in elite athletes. Sports Biomech 2022:1-20. [PMID: 35723238 DOI: 10.1080/14763141.2022.2071760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
This study investigated the association among isometric upper-limb strength of handcyclists and sport-specific performance outcomes. At two international events, 62 athletes were tested on upper-limb strength, measured with an isometric-strength setup and with Manual Muscle Test (MMT). Horizontal force (Fz), effectiveness, rate of development, variability, and asymmetries were calculated for upper-limb pull and push. Performance measures were mean (POmean) and peak (POpeak) 20-s sprint power output and average time-trial velocity (TTvelocity). Regression models were conducted to investigate which pull and push strength variables associated strongest with performance measures. Additional regression analyses were conducted with an MMT sum score as predictor. Push and pull Fz showed the strongest associations with all outcomes. Combined push and pull Fz explained (p < .001) 80-81% of variance of POmean and POpeak. For TTvelocity, only push Fz was included in the model explaining 29% of the variance (p < .001). MMT models revealed weaker associations with sprint PO (R2 = .38-.40, p < .001) and TTvelocity (R2 = .18, p = 0.001). The findings confirmed the relevance of upper-limb strength on handcycling performance and the significance of ratio-scaled strength measures. Isometric strength outcomes are adequate sport-specific indicators of impairment in handcycling classification, but future research should corroborate this notion and its potential to discriminate between sports classes.
Collapse
Affiliation(s)
- Rafael E A Muchaxo
- Department of Human Movement Sciences, Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
| | - Sonja de Groot
- Department of Human Movement Sciences, Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Center for Adapted Sports Amsterdam, Amsterdam Institute of Sport Science, Amsterdam, The Netherlands
| | - Ingrid Kouwijzer
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Research and Development, Heliomare Rehabilitation Center, WijkAan Zee, The Netherlands
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lucas H V van der Woude
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Center for Rehabilitation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- School of Sports, Exercise & Health, Peter Harrison Centre of Disability Sport, Loughborough University, Loughborough, UK
| | | | - Thomas W J Janssen
- Department of Human Movement Sciences, Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Center for Adapted Sports Amsterdam, Amsterdam Institute of Sport Science, Amsterdam, The Netherlands
| |
Collapse
|
6
|
The Science of Handcycling: A Narrative Review. Int J Sports Physiol Perform 2022; 17:335-342. [DOI: 10.1123/ijspp.2021-0458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
The aim of this narrative review is to provide insight as to the history, biomechanics, and physiological characteristics of competitive handcycling. Furthermore, based upon the limited evidence available, this paper aims to provide practical training suggestions by which to develop competitive handcycling performance. Handbike configuration, individual physiological characteristics, and training history all play a significant role in determining competitive handcycling performance. Optimal handcycling technique is highly dependent upon handbike configuration. As such, seat positioning, crank height, crank fore-aft position, crank length, and handgrip position must all be individually configured. In regard to physiological determinants, power output at a fixed blood lactate concentration of 4 mmol·L−1, relative oxygen consumption, peak aerobic power output, relative upper body strength, and maximal anaerobic power output have all been demonstrated to impact upon handcycling performance capabilities. Therefore, it is suggested that that an emphasis be placed upon the development and frequent monitoring of these parameters. Finally, linked to handcycling training, it is suggested that handcyclists should consider adopting a concurrent strength and endurance training approach, based upon a block periodization model that employs a mixture of endurance, threshold, interval, and strength training sessions. Despite our findings, it is clear that several gaps in our scientific knowledge of handcycling remain and that further research is necessary in order to improve our understanding of factors that determine optimal performance of competitive handcyclists. Finally, further longitudinal research is required across all classifications to study the effects of different training programs upon handcycling performance.
Collapse
|
7
|
Muchaxo R, De Groot S, Kouwijzer I, Van Der Woude L, Janssen T, Nooijen CFJ. A Role for Trunk Function in Elite Recumbent Handcycling Performance? J Sports Sci 2021; 39:2312-2321. [PMID: 34078241 DOI: 10.1080/02640414.2021.1930684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Handcycling classification considers trunk function, but there is limited scientific evidence of trunk involvement in recumbent performance. This study investigated the association between trunk function and recumbent handcycling performance of athletes without upper-limb impairments (H3-H4 sport classes). The study was divided into two parts. First, 528 time-trial results from 81 handcyclists with spinal cord injury (SCI) were obtained between 2014 and 2020. Average time-trial velocity was used as performance measure and SCI level as trunk function determinant. Multilevel regression analysis was performed to analyse differences in performance among SCI groups while correcting for lesion completeness, sex, and age. Second, in 26 handcyclists, standardised trunk flexion strength was measured with a handheld dynamometer. Peak and mean power-output from a sprint test and time-trial average velocity were used as performance measures. Spearman correlations were conducted to investigate the association between trunk strength and performance. Results showed that the different SCI groups did not exhibit significant differences in performance. Furthermore, trunk flexion strength and performance exhibited non-significant weak to moderate correlations (for time-trial speed: rs = 0.36; p = 0.07). Results of both analyses suggest that trunk flexion strength does not seem to significantly impact recumbent handcycling performance in athletes without upper-limb impairments.
Collapse
Affiliation(s)
- Rafael Muchaxo
- Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Rehabilitation Research Center, Amsterdam, The Netherlands
| | - Sonja De Groot
- Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Rehabilitation Research Center, Amsterdam, The Netherlands.,Center for Adapted Sports Amsterdam, Amsterdam Institute of Sport Science, Amsterdam, The Netherlands
| | - Ingrid Kouwijzer
- Amsterdam Rehabilitation Research Center, Amsterdam, The Netherlands.,Research and Development, Heliomare Rehabilitation Center, Wijk Aan Zee, The Netherlands.,University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands
| | - Lucas Van Der Woude
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Center for Rehabilitation, Groningen, The Netherlands.,Loughborough University, School of Sports, Exercise & Health, Peter Harrison Centre of Disability Sport
| | - Thomas Janssen
- Faculty of Behavioural and Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Rehabilitation Research Center, Amsterdam, The Netherlands.,Center for Adapted Sports Amsterdam, Amsterdam Institute of Sport Science, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
The Relationship Between Absolute and Relative Upper-Body Strength and Handcycling Performance Capabilities. Int J Sports Physiol Perform 2021; 16:1311-1318. [PMID: 33883303 DOI: 10.1123/ijspp.2020-0580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To explore the relationship between absolute and relative upper-body strength and selected measures of handcycling performance. METHODS A total of 13 trained H3/H4-classified male handcyclists (mean [SD] age 37 [11] y; body mass 76.6 [10.1] kg; peak oxygen consumption 2.8 [0.6] L·min-1; relative peak oxygen consumption 36.5 [10] mL·kg·min-1) performed a prone bench-pull and bench-press 1-repetition-maximum strength assessment, a 15-km individual time trial, a graded exercise test, and a 15-second all-out sprint test. Relationships between all variables were assessed using Pearson correlation coefficient. RESULTS Absolute strength measures displayed a large correlation with gross mechanical efficiency and maximum anaerobic power output (P = .05). However, only a small to moderate relationship was identified with all other measures. In contrast, relative strength measures demonstrated large to very large correlations with gross mechanical efficiency, 15-km time-trial velocity, maximum anaerobic power output, peak aerobic power output, power at a fixed blood lactate concentration of 4 mmol·L-1, and peak oxygen consumption (P = .05). CONCLUSION Relative upper-body strength demonstrates a significant relationship with time-trial velocity and several handcycling performance measures. Relative strength is the product of one's ability to generate maximal forces relative to body mass. Therefore, the development of one's absolute strength combined with a reduction in body mass may influence real-world handcycling race performance.
Collapse
|
9
|
The Anthropometric, Physiological, and Strength-Related Determinants of Handcycling 15-km Time-Trial Performance. Int J Sports Physiol Perform 2020; 16:259-266. [PMID: 33186895 DOI: 10.1123/ijspp.2019-0861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The aim of this study was to investigate the relationship between selected anthropometric, physiological, and upper-body strength measures and 15-km handcycling time-trial (TT) performance. METHODS Thirteen trained H3/H4 male handcyclists performed a 15-km TT, graded exercise test, 15-second all-out sprint, and 1-repetition-maximum assessment of bench press and prone bench pull strength. Relationship between all variables was assessed using a Pearson correlation coefficient matrix with mean TT velocity representing the principal performance outcome. RESULTS Power at a fixed blood lactate concentration of 4 mmol·L-1 (r = .927; P < .01) showed an extremely large correlation with TT performance, whereas relative V˙O2peak (peak oxygen uptake) (r = .879; P < .01), power-to-mass ratio (r = .879; P < .01), peak aerobic power (r = .851; P < .01), gross mechanical efficiency (r = 733; P < .01), relative prone bench pull strength (r = .770; P = .03) relative bench press strength (r = .703; P = .11), and maximum anaerobic power (r = .678; P = .15) all demonstrated a very large correlation with performance outcomes. CONCLUSION Findings of this study indicate that power at a fixed blood lactate concentration of 4 mmol·L-1, relative V˙O2peak, power-to-mass ratio, peak aerobic power, gross mechanical efficiency, relative upper-body strength, and maximum anaerobic power are all significant determinants of 15-km TT performance in H3/H4 handcyclists.
Collapse
|
10
|
Mason BS, Stone B, Warner MB, Goosey-Tolfrey VL. Crank length alters kinematics and kinetics, yet not the economy of recumbent handcyclists at constant handgrip speeds. Scand J Med Sci Sports 2020; 31:388-397. [PMID: 33079394 DOI: 10.1111/sms.13859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022]
Abstract
Handcycling performance is dependent on the physiological economy of the athlete; however, handbike configuration and the biomechanical interaction between the two are also vital. The purpose of this study was to examine the effect of crank length manipulations on physiological and biomechanical aspects of recumbent handcycling performance in highly trained recumbent handcyclists at a constant linear handgrip speed and sport-specific intensity. Nine competitive handcyclists completed a 3-minute trial in an adjustable recumbent handbike in four crank length settings (150, 160, 170 & 180 mm) at 70% peak power output. Handgrip speed was controlled (1.6 m·s-1 ) across trials with cadences ranging from 102 to 85 rpm. Physiological economy, heart rate, and ratings of perceived exertion were monitored in all trials. Handcycling kinetics were quantified using an SRM (Schoberer Rad Messtechnik) powermeter, and upper limb kinematics were determined using a 10-camera VICON motion capture system. Physiological responses were not significantly affected by crank length. However, greater torque was generated (P < .0005) and peak torque occurred earlier during the push and pull phase (P ≤ .001) in longer cranks. Statistical parametric mapping revealed that the timing and orientation of shoulder flexion, shoulder abduction, and elbow extension were significantly altered in different crank lengths. Despite the biomechanical adaptations, these findings suggest that at constant handgrip speeds (and varying cadence) highly trained handcyclists may select crank lengths between 150 and 180 mm without affecting their physiological performance. Until further research, factors such as anthropometrics, comfort, and self-selected cadence should be used to facilitate crank length selection in recumbent handcyclists.
Collapse
Affiliation(s)
- Barry S Mason
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise & Health Sciences, NCSEM, Loughborough University, Loughborough, UK
| | - Benjamin Stone
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise & Health Sciences, NCSEM, Loughborough University, Loughborough, UK
| | - Martin B Warner
- School of Health Sciences, University of Southampton, Southampton, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Nottingham University Hospitals, Nottingham, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise & Health Sciences, NCSEM, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Stephenson BT, Stone B, Mason BS, Goosey‐Tolfrey VL. Physiology of handcycling: A current sports perspective. Scand J Med Sci Sports 2020; 31:4-20. [DOI: 10.1111/sms.13835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Ben T. Stephenson
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
- English Institute of Sport Performance Centre Loughborough University Loughborough UK
| | - Benjamin Stone
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Barry S. Mason
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Victoria L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| |
Collapse
|
12
|
Stone B, Mason BS, Stephenson BT, Goosey-Tolfrey VL. Physiological responses during simulated 16 km recumbent handcycling time trial and determinants of performance in trained handcyclists. Eur J Appl Physiol 2020; 120:1621-1628. [PMID: 32435985 PMCID: PMC7295712 DOI: 10.1007/s00421-020-04390-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Purpose To characterise the physiological profiles of trained handcyclists, during recumbent handcycling, to describe the physiological responses during a 16 km time trial (TT) and to identify the determinants of this TT performance. Methods Eleven male handcyclists performed a sub-maximal and maximal incremental exercise test in their recumbent handbike, attached to a Cyclus II ergometer. A physiological profile, including peak aerobic power output (POPeak), peak rate of oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2Peak), aerobic lactate threshold (AeLT) and PO at 4 mmol L−1 (PO4), were determined. Participants also completed a 16 km simulated TT using the same experimental set-up. Determinants of TT performance were identified using stepwise multiple linear regression analysis. Results Mean values of POPeak = 252 ± 9 W, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2Peak = 3.30 ± 0.36 L min−1 (47.0 ± 6.8 mL kg−1 min−1), AeLT = 87 ± 13 W and PO4 = 154 ± 14 W were recorded. The TT was completed in 29:21 ± 0:59 min:s at an intensity equivalent to 69 ± 4% POPeak and 87 ± 5% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2Peak. POPeak (r = − 0.77, P = 0.006), PO4 (r = − 0.77, P = 0.006) and AeLT (r = − 0.68, P = 0.022) were significantly correlated with TT performance. PO4 and POPeak were identified as the best predictors of TT performance (r = 0.89, P < 0.001). Conclusion POPeak, PO4 and AeLT are important physiological TT performance determinants in trained handcyclists, differentiating between superior and inferior performance, whereas \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak was not. The TT took place at an intensity corresponding to 69% POPeak and 87% \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2peak.
Collapse
Affiliation(s)
- Benjamin Stone
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, NCSEM 1.26, Loughborough University Campus, Loughborough, LE11 3TU, UK
| | - Barry S Mason
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, NCSEM 1.26, Loughborough University Campus, Loughborough, LE11 3TU, UK
| | - Ben T Stephenson
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, NCSEM 1.26, Loughborough University Campus, Loughborough, LE11 3TU, UK.,English Institute of Sport, Performance Centre, Loughborough University, Loughborough, UK
| | - Vicky L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, NCSEM 1.26, Loughborough University Campus, Loughborough, LE11 3TU, UK.
| |
Collapse
|
13
|
Quittmann OJ, Abel T, Albracht K, Strüder HK. Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants. Sports Biomech 2020; 21:1200-1223. [PMID: 32375554 DOI: 10.1080/14763141.2020.1745266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aims to quantify the kinematics, kinetics and muscular activity of all-out handcycling exercise and examine their alterations during the course of a 15-s sprint test. Twelve able-bodied competitive triathletes performed a 15-s all-out sprint test in a recumbent racing handcycle that was attached to an ergometer. During the sprint test, tangential crank kinetics, 3D joint kinematics and muscular activity of 10 muscles of the upper extremity and trunk were examined using a power metre, motion capturing and surface electromyography (sEMG), respectively. Parameters were compared between revolution one (R1), revolution two (R2), the average of revolution 3 to 13 (R3) and the average of the remaining revolutions (R4). Shoulder abduction and internal-rotation increased, whereas maximal shoulder retroversion decreased during the sprint. Except for the wrist angles, angular velocity increased for every joint of the upper extremity. Several muscles demonstrated an increase in muscular activation, an earlier onset of muscular activation in crank cycle and an increased range of activation. During the course of a 15-s all-out sprint test in handcycling, the shoulder muscles and the muscles associated to the push phase demonstrate indications for short-duration fatigue. These findings are helpful to prevent injuries and improve performance in all-out handcycling.
Collapse
Affiliation(s)
- Oliver J Quittmann
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Thomas Abel
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,European Research Group in Disability Sport, Cologne, Germany
| | - Kirsten Albracht
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Faculty of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Heiko K Strüder
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
14
|
Quittmann OJ, Abel T, Albracht K, Meskemper J, Foitschik T, Strüder HK. Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants. Eur J Appl Physiol 2020; 120:1403-1415. [DOI: 10.1007/s00421-020-04373-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/09/2020] [Indexed: 12/27/2022]
|
15
|
STONE BENJAMIN, MASON BARRYS, WARNER MARTINB, GOOSEY-TOLFREY VICTORIAL. Horizontal Crank Position Affects Economy and Upper Limb Kinematics of Recumbent Handcyclists. Med Sci Sports Exerc 2019; 51:2265-2273. [DOI: 10.1249/mss.0000000000002062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|