1
|
D’Ambrosio P, Claessen G, Kistler PM, Heidbuchel H, Kalman JM, La Gerche A. Ventricular arrhythmias in association with athletic cardiac remodelling. Europace 2024; 26:euae279. [PMID: 39499658 PMCID: PMC11641426 DOI: 10.1093/europace/euae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/07/2024] Open
Abstract
Athletes are predisposed to atrial arrhythmias but the association between intense endurance exercise training, ventricular arrhythmias (VAs), and sudden cardiac death is less well established. Thus, it is unclear whether the 'athlete's heart' promotes specific arrhythmias or whether it represents a more general pro-arrhythmogenic phenotype. Whilst direct causality has not been established, it appears possible that repeated exposure to high-intensity endurance exercise in some athletes contributes to formation of pro-arrhythmic cardiac phenotypes that underlie VAs. Theories regarding potential mechanisms for exercise-induced VAs include repeated bouts of myocardial inflammation and stretch-induced cellular remodelling. Small animal models provide some insights, but larger animal and human data are sparse. The current clinical approach to VAs in athletes is to differentiate those with and without structural or electrical heart disease. However, if the athlete's heart involves a degree of pro-arrhythmogenic remodelling, then this may not be such a simple dichotomy. Questions are posed by athletes with VAs in combination with extreme remodelling. Some markers, such as scar on magnetic resonance imaging, may point towards a less benign phenotype but are also quite common in ostensibly healthy athletes. Other clinical and invasive electrophysiology features may be helpful in identifying the at-risk athlete. This review seeks to discuss the association between athletic training and VAs. We will discuss the potential mechanisms, clinical significance, and approach to the management of athletes with VAs.
Collapse
MESH Headings
- Humans
- Ventricular Remodeling
- Athletes
- Cardiomegaly, Exercise-Induced
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/etiology
- Animals
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/etiology
- Risk Factors
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/diagnosis
Collapse
Affiliation(s)
- Paolo D’Ambrosio
- Department of Medicine, The University of Melbourne, Grattan St, Parkville, VIC 3010, Australia
- Heart Exercise & Research Trials (HEART) Lab, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065, Australia
- Department of Cardiology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, VIC 3052, Australia
| | - Guido Claessen
- Faculty of Medicine and Life Sciences, LCRC, UHasselt, Biomedical Research Institute, Diepenbeek, Belgium
- Hartcentrum Hasselt, Jessa Ziekenhuis, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Peter M Kistler
- Department of Medicine, The University of Melbourne, Grattan St, Parkville, VIC 3010, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Clayton, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hein Heidbuchel
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Jonathan M Kalman
- Department of Medicine, The University of Melbourne, Grattan St, Parkville, VIC 3010, Australia
- Department of Cardiology, The Royal Melbourne Hospital, 300 Grattan St, Parkville, VIC 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - André La Gerche
- Department of Medicine, The University of Melbourne, Grattan St, Parkville, VIC 3010, Australia
- Heart Exercise & Research Trials (HEART) Lab, St Vincent’s Institute, 9 Princes St, Fitzroy, VIC 3065, Australia
- Department of Cardiology, St Vincent’s Hospital, Fitzroy, VIC, Australia
- HEART Lab, Victor Chang Cardiovascular Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Fanale V, Segreti A, Fossati C, Di Gioia G, Coletti F, Crispino SP, Picarelli F, Antonelli Incalzi R, Papalia R, Pigozzi F, Grigioni F. Athlete's ECG Made Easy: A Practical Guide to Surviving Everyday Clinical Practice. J Cardiovasc Dev Dis 2024; 11:303. [PMID: 39452274 PMCID: PMC11508899 DOI: 10.3390/jcdd11100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Electrocardiogram modifications in athletes are common and usually reflect structural and electrical heart adaptations to regular physical training, known as the athlete's heart. However, these electrical modifications sometimes overlap with electrocardiogram findings that are characteristic of various heart diseases. A missed or incorrect diagnosis can significantly impact a young athlete's life and potentially have fatal consequences during exercise, such as sudden cardiac death, which is the leading cause of death in athletes. Therefore, it is crucial to correctly distinguish between expected exercise-related electrocardiogram changes in an athlete and several electrocardiogram abnormalities that may indicate underlying heart disease. This review aims to serve as a practical guide for cardiologists and sports clinicians, helping to define normal and physiology-induced electrocardiogram findings from those borderlines or pathological, and indicating when further investigations are necessary. Therefore, the possible athlete's electrocardiogram findings, including rhythm or myocardial adaptation, will be analyzed here, focusing mainly on the differentiation from pathological findings.
Collapse
Affiliation(s)
- Valerio Fanale
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Andrea Segreti
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Giuseppe Di Gioia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy
| | - Federica Coletti
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Simone Pasquale Crispino
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Francesco Picarelli
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Raffaele Antonelli Incalzi
- Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Rocco Papalia
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Francesco Grigioni
- Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
3
|
Tsai IH, Kao WF, How CK, Li LH, Lin YK, Kung LC, Chiu YH, Chien DK, Chang WH. Cardiac autonomic regulation following a 246-km mountain ultra-marathon: An observational study. Medicine (Baltimore) 2024; 103:e38756. [PMID: 38968488 PMCID: PMC11224880 DOI: 10.1097/md.0000000000038756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Physical exercise requires integrated autonomic and cardiovascular adjustments to maintain homeostasis. We aimed to observe acute posture-related changes in blood pressure, and apply a portable noninvasive monitor to measure the heart index for detecting arrhythmia among elite participants of a 246-km mountain ultra-marathon. Nine experienced ultra-marathoners (8 males and 1 female) participating in the Run Across Taiwan Ultra-marathon in 2018 were enrolled. The runners' Heart Spectrum Blood Pressure Monitor measurements were obtained in the standing and supine positions before and immediately after the race. Their high-sensitivity troponin T and N-terminal proB-type natriuretic peptide levels were analyzed 1 week before and immediately after the event. Heart rate was differed significantly in the immediate postrace assessment compared to the prerace assessment, in both the standing (P = .011; d = 1.19) and supine positions (P = .008; d = 1.35). Postural hypotension occurred in 4 (44.4%) individuals immediately postrace. In 3 out of 9 (33.3%) recruited finishers, the occurrence of premature ventricular complex signals in the standing position was detected; premature ventricular complex signal effect was observed in the supine position postrace in only 1 participant (11.1%). Premature ventricular complex signal was positively correlated with running speed (P = .037). Of the 6 individuals who completed the biochemical tests postrace, 2 (33.3%) had high-sensitivity troponin T and 6 (100%) had N-terminal proB-type natriuretic peptide values above the reference interval. A statistically significant increase was observed in both the high-sensitivity troponin T (P = .028; d = 1.97), and N-terminal proB-type natriuretic peptide (P = .028; d = 2.91) levels postrace compared to prerace. In conclusion, significant alterations in blood pressure and heart rate were observed in the standing position, and postexercise (postural) hypotension occurred among ultra-marathoners. The incidence of premature ventricular complexes was higher after the race than before.
Collapse
Affiliation(s)
- I-Hsun Tsai
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Puzih City, Chiayi County, Taiwan
| | - Wei-Fong Kao
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Program of Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Lu-Chih Kung
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yu-Hui Chiu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ding-Kuo Chien
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Han Chang
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
4
|
Veselik AK, Arteyeva NV, Varlamova NG, Loginova TP, Garnov IO, Bojko ER, Azarov JE. Cardiac repolarisation indices are associated with oxygen consumption during maximal exercise test in highly-trained cross-country skiers. J Sports Sci 2024; 42:1072-1080. [PMID: 39056492 DOI: 10.1080/02640414.2024.2383009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
The objective of this study was to test the vectorelectrocardiographic T-wave characteristics for their associations with oxygen consumption (VO2) and physical performance during a maximal cardiopulmonary exercise test (CPET) in highly trained cross-country skiers. Male highly trained cross-country skiers (n = 30) performed the maximal CPET on the bicycle ergospirometric "Oxycon Pro" system with simultaneous oxygen consumption (VO2) and electrocardiogram recording. The measurements were done at rest; the stage preceding anaerobic threshold (preAnT); peak load; and recovery. The anaerobic threshold was estimated by respiratory exchange ratio. Physical performance was estimated by maximal oxygen consumption (VO2max/kg). VECG characteristics were calculated using Kors transformation procedure. During the test, the magnitudes of T-vector, Tx and Ty components decreased until preAnT, then stayed relatively stable until peak load, and reversed during recovery. In univariate linear regression analysis, T-vector amplitude and Tx, Ty and Tz magnitudes were associated with VO2/kg during the test (p < 0.010). The baseline T-vector characteristics were not associated with physical performance. At the preAnT stage, Tx and T-vector amplitude were associated with VO2max/kg (RC 12.70, 95% CI 0.68-24.73, p = 0.039 and RC 10.64, 95% CI 1.62-19.67, p = 0.023, respectively).
Collapse
Affiliation(s)
- Alla K Veselik
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia V Arteyeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Nina G Varlamova
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana P Loginova
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Igor O Garnov
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Evgeny R Bojko
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jan E Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
5
|
Weiss K, Valero D, Villiger E, Thuany M, Forte P, Gajda R, Scheer V, Sreckovic S, Cuk I, Nikolaidis PT, Andrade MS, Knechtle B. Analysis of over 1 million race records shows runners from East African countries as the fastest in 50-km ultra-marathons. Sci Rep 2024; 14:8006. [PMID: 38580778 PMCID: PMC10997622 DOI: 10.1038/s41598-024-58571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The 50-km ultra-marathon is a popular race distance, slightly longer than the classic marathon distance. However, little is known about the country of affiliation and age of the fastest 50-km ultra-marathon runners and where the fastest races are typically held. Therefore, this study aimed to investigate a large dataset of race records for the 50-km distance race to identify the country of affiliation and the age of the fastest runners as well as the locations of the fastest races. A total of 1,398,845 50-km race records (men, n = 1,026,546; women, n = 372,299) were analyzed using both descriptive statistics and advanced regression techniques. This study revealed significant trends in the performance of 50-km ultra-marathoners. The fastest 50-km runners came from African countries, while the fastest races were found to occur in Europe and the Middle East. Runners from Ethiopia, Lesotho, Malawi, and Kenya were the fastest in this race distance. The fastest 50-km racecourses, providing ideal conditions for faster race times, are in Europe (Luxembourg, Belarus, and Lithuania) and the Middle East (Qatar and Jordan). Surprisingly, the fastest ultra-marathoners in the 50-km distance were found to fall into the age group of 20-24 years, challenging the conventional belief that peak ultra-marathon performance comes in older age groups. These findings contribute to a better understanding of the performance models in 50-km ultra-marathons and can serve as valuable insights for runners, coaches, and race organizers in optimizing training strategies and racecourse selection.
Collapse
Affiliation(s)
- Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Elias Villiger
- Klinik für Allgemeine Innere Medizin, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Pedro Forte
- CI-ISCE, Higher Institute of Educational Sciences of the Douro, Penafiel, Portugal
- LiveWell-Research Centre for Active Living and Wellbeing, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Robert Gajda
- Center for Sports Cardiology at the Gajda-Med Medical Center in Pułtusk, Pułtusk, Poland
- Department of Kinesiology and Health Prevention, Jan Dlugosz University, Czestochowa, Poland
| | - Volker Scheer
- Ultra Sports Science Foundation, Pierre-Benite, France
| | | | - Ivan Cuk
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | | | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| |
Collapse
|
6
|
Graziano F, Juhasz V, Brunetti G, Cipriani A, Szabo L, Merkely B, Corrado D, D’Ascenzi F, Vago H, Zorzi A. May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review. J Cardiovasc Dev Dis 2022; 9:jcdd9100347. [PMID: 36286299 PMCID: PMC9604467 DOI: 10.3390/jcdd9100347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
The positive effects of physical activity are countless, not only on the cardiovascular system but on health in general. However, some studies suggest a U-shape relationship between exercise volume and effects on the cardiovascular system. On the basis of this perspective, moderate-dose exercise would be beneficial compared to a sedentary lifestyle, while very high-dose physical activity would paradoxically be detrimental. We reviewed the available evidence on the potential adverse effects of very intense, prolonged exercise on the cardiovascular system, both acute and chronic, in healthy athletes without pre-existing cardiovascular conditions. We found that endurance sports activities may cause reversible electrocardiographic changes, ventricular dysfunction, and troponin elevation with complete recovery within a few days. The theory that repeated bouts of acute stress on the heart may lead to chronic myocardial damage remains to be demonstrated. However, male veteran athletes with a long sports career show an increased prevalence of cardiovascular abnormalities such as electrical conduction delay, atrial fibrillation, myocardial fibrosis, and coronary calcifications compared to non-athletes. It must be underlined that the cause-effect relationship between such abnormalities and the exercise and, most importantly, the prognostic relevance of such findings remains to be established.
Collapse
Affiliation(s)
- Francesca Graziano
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Vencel Juhasz
- Heart and Vascular Center of Semmelweis University, Hataror Rd. 18, 1122 Budapest, Hungary
| | - Giulia Brunetti
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Liliana Szabo
- Heart and Vascular Center of Semmelweis University, Hataror Rd. 18, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center of Semmelweis University, Hataror Rd. 18, 1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Gaal Jozsef Str. 9-11, 1122 Budapest, Hungary
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy
| | - Hajnalka Vago
- Heart and Vascular Center of Semmelweis University, Hataror Rd. 18, 1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Gaal Jozsef Str. 9-11, 1122 Budapest, Hungary
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
- Correspondence: ; Tel.: +39-049-8212322
| |
Collapse
|
7
|
Wolff S, Picco JM, Díaz-González L, Valenzuela PL, Gonzalez-Dávila E, Santos-Lozano A, Matile P, Wolff D, Boraita A, Lucia A. Exercise-Induced Cardiac Fatigue in Recreational Ultramarathon Runners at Moderate Altitude: Insights From Myocardial Deformation Analysis. Front Cardiovasc Med 2022; 8:744393. [PMID: 35141287 PMCID: PMC8818846 DOI: 10.3389/fcvm.2021.744393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Controversy exists on the actual occurrence of exercise-induced cardiac fatigue (EICF) with ultraendurance exercise, as well as on whether factors such as age or training status might predispose to this condition. The present study aimed to assess the occurrence of EICF among recreational ultramarathon runners, as well as to determine potential predictive factors. Methods Nineteen male recreational runners (42 ± 12yrs) participated in a 55-km trial race at moderate altitude (1,800–2,500 m). Participants were evaluated before and after the race using Doppler echocardiography and myocardial deformation analysis. EICF was determined as a reduction >5% of either left ventricular global longitudinal strain (LVGLS) or right ventricular free wall strain (RVFWS). Demographical (age, body mass index), training (training experience, volume and intensity), competition (finishing time, relative intensity) and biochemical variables (blood lactate, creatine kinase [CK] and CK-MB) were assessed as predictors of EICF. Results A significant reduction in LVGLS (20.1 ± 2.1% at baseline vs. 18.8 ± 2.4% at post-race, p = 0.026), but not in RVFWS (27.4 ± 7.0 vs. 24.6 ± 5.3%, p = 0.187), was observed after the race. EICF was present in 47 and 71% of the participants attending to the decrease in LVGLS and RVFWS, respectively. No associations were found between any of the analyzed variables and EICF except for age, which was associated with the magnitude of decrement of RVFWS (r = 0.58, p = 0.030). Conclusions Ultramarathon running at moderate altitude seems to induce EICF in a considerable proportion of recreational athletes.
Collapse
Affiliation(s)
- Sebastián Wolff
- Wolff Cardiology and Sport Medicine Institute, Mendoza, Argentina
| | - José M. Picco
- Wolff Cardiology and Sport Medicine Institute, Mendoza, Argentina
| | - Leonel Díaz-González
- Cardiology Department, CEMTRO Clinic, Madrid, Spain
- Cardiology Department, La Paz Hospital, Madrid, Spain
| | - Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group (“PaHerg”), Research Institute of the Hospital 12 de Octubre (“Imas12”), Madrid, Spain
| | | | - Alejandro Santos-Lozano
- I+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
- Physical Activity and Health Research Group (“PaHerg”), Research Institute of the Hospital 12 de Octubre (“Imas12”), Madrid, Spain
| | | | - David Wolff
- Wolff Cardiology and Sport Medicine Institute, Mendoza, Argentina
| | - Araceli Boraita
- Department of Cardiology, Sports Medicine Center, Spanish Sports Health Protection Agency, Consejo Superior de Deportes, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Physical Activity and Health Research Group (“PaHerg”), Research Institute of the Hospital 12 de Octubre (“Imas12”), Madrid, Spain
- *Correspondence: Alejandro Lucia
| |
Collapse
|
8
|
The Acute Effects of an Ultramarathon on Atrial Function and Supraventricular Arrhythmias in Master Athletes. J Clin Med 2022; 11:jcm11030528. [PMID: 35159979 PMCID: PMC8836407 DOI: 10.3390/jcm11030528] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endurance sports practice has significantly increased over the last decades, with a growing proportion of master athletes. However, concerns exist regarding the potential proarrhythmic effects induced by ultra-endurance sports. This study aimed to analyse the acute effects of an ultramarathon race on atrial remodelling and supraventricular arrhythmias in a population of master athletes. METHODS Master athletes participating in an ultramarathon (50 km, 600 m of elevation gain) with no history of heart disease were recruited. A single-lead ECG was recorded continuously from the day before to the end of the race. Echocardiography and 12-lead resting ECG were performed before and immediately at the end of the race. RESULTS The study sample consisted of 68 healthy non-professional master athletes. Compared with baseline, P wave voltage was higher after the race (p < 0.0001), and more athletes developed ECG criteria for right atrial enlargement (p < 0.0001). Most of the athletes (97%) had ≥1 premature atrial beats (PAB) during the 24-h monitoring, also organised in triplets (17%) and non-sustained supraventricular tachycardias (NSSVTs) (19%). In contrast, exercise-induced PABs, triplets, and NSSVTs were rare. One athlete developed acute atrial fibrillation during the race. After the race, no significant differences were found in biatrial dimensions. Biatrial function, estimated by peak atrial longitudinal and contraction strains, were normal both before and after the race. CONCLUSIONS In master athletes running an ultramarathon, acute exercise-induced atrial dysfunction was not detected, and exercise-induced supraventricular arrhythmias were uncommon. These results did not confirm the hypothesis of an acute atrial dysfunction induced by ultra-endurance exercise.
Collapse
|
9
|
Cavigli L, Zorzi A, Spadotto V, Gismondi A, Sisti N, Valentini F, Anselmi F, Mandoli GE, Spera L, Di Florio A, Baccani B, Cameli M, D'Ascenzi F. The acute effects of an ultramarathon on biventricular function and ventricular arrhythmias in master athletes. Eur Heart J Cardiovasc Imaging 2021; 23:423-430. [PMID: 33544827 DOI: 10.1093/ehjci/jeab017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Endurance sports practice has significantly increased over the last decades, with a growing proportion of participants older than 40 years. Although the benefits of moderate regular exercise are well known, concerns exist regarding the potential negative effects induced by extreme endurance sport. The aim of this study was to analyse the acute effects of an ultramarathon race on the electrocardiogram (ECG), biventricular function, and ventricular arrhythmias in a population of master athletes. METHODS AND RESULTS Master athletes participating in an ultramarathon (50 km, 600 m of elevation gain) with no history of heart disease were recruited. A single-lead ECG was recorded continuously from the day before to the end of the race. Echocardiography and 12-lead resting ECG were performed before and at the end of the race. The study sample consisted of 68 healthy non-professional master athletes. Compared with baseline, R-wave amplitude in V1 and QTc duration were higher after the race (P < 0.001). Exercise-induced isolated premature ventricular beats were observed in 7% of athletes; none showed non-sustained ventricular tachycardia before or during the race. Left ventricular ejection fraction, global longitudinal strain (GLS), and twisting did not significantly differ before and after the race. After the race, no significant differences were found in right ventricular inflow and outflow tract dimensions, fractional area change, s', and free wall GLS. CONCLUSION In master endurance athletes running an ultra-marathon, exercise-induced ventricular dysfunction, or relevant ventricular arrhythmias was not detected. These results did not confirm the hypothesis of a detrimental acute effect of strenuous exercise on the heart.
Collapse
Affiliation(s)
- Luna Cavigli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, Padova, Italy
| | - Veronica Spadotto
- Ospedale Riabilitativo di Alta Specializzazione, Motta di Livenza (TV), Italy
| | - Annalaura Gismondi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Niccolò Sisti
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Francesca Valentini
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Francesca Anselmi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Giulia Elena Mandoli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Lucia Spera
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Alex Di Florio
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Bernardo Baccani
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Matteo Cameli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Viale M. Bracci, 16, 53100 Siena, Italy
| |
Collapse
|
10
|
(Right ventricle in athletes). COR ET VASA 2020. [DOI: 10.33678/cor.2020.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zorzi A, Vio R, Bettella N, Corrado D. Criteria for interpretation of the athlete's ECG: A critical appraisal. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2020; 43:882-890. [PMID: 32602144 DOI: 10.1111/pace.14001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 01/27/2023]
Abstract
The electrocardiogram (ECG) is cheap and widely available but its use as a screening tool for early identification of athletes with a cardiac disease at risk of sudden cardiac death is controversial because of presumed low specificity. In the last decade, several efforts have been made to improve the distinction between physiological and pathological ECG findings in the athlete, leading to continuous evolution of the interpretation criteria. The most recent 2017 International criteria grouped ECG changes into three categories: normal, borderline, and abnormal. Borderline findings warrant further investigations only when two or more are present while abnormal changes should always be considered as the sign of a possible underlying disease. This review encompasses the evolution of the athlete's ECG interpretation criteria and highlights areas of uncertainty that will need to be addressed by further studies.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Riccardo Vio
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Natascia Bettella
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Lavoué C, Siracusa J, Chalchat É, Bourrilhon C, Charlot K. Analysis of food and fluid intake in elite ultra-endurance runners during a 24-h world championship. J Int Soc Sports Nutr 2020; 17:36. [PMID: 32652998 PMCID: PMC7353765 DOI: 10.1186/s12970-020-00364-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Background Properly replacing energy and fluids is a challenge for 24-h ultramarathoners because such unusually high intake may induce adverse effects (gastrointestinal symptoms [GIS] and exercise-associated hyponatremia [EAH]). We analyzed such intake for 12 twelve elite athletes (6 males and 6 females; age: 46 ± 7 years, height: 170 ± 9 cm, weight: 61.1 ± 9.6 kg, total distance run: 193–272 km) during the 2019 24-h World Championships and compared it to the latest nutritional recommendations described by the International Society of Sports Nutrition in 2019. We hypothesized that these elite athletes would easily comply these recommendations without exhibiting detrimental adverse symptoms. Methods Ad libitum food and fluid intake was recorded in real-time and energy, macronutrient, sodium, and caffeine intake then calculated using a spreadsheet in which the nutritional composition of each item was previously recorded. GIS, markers of dehydration (body mass modifications, plasma and urine osmolality, and plasma volume; samples obtained 26 h before and just after the race) and EAH (plasma and urine sodium concentrations) were also assessed. Results Fluid, energy, and carbohydrate intake of the 11 finishers was 16.4 ± 6.9 L, 35.1 ± 15.7 MJ, and 1.49 ± 0.71 kg, respectively. Individual analyses showed that all but one (for fluid intake) or two (for energy and carbohydrate intake) consumed more than the minimum recommendations. The calculated energy balance remained, however, largely negative (− 29.5 ± 16.1 MJ). Such unusually high intake was not accompanied by detrimental GIS (recorded in 75%, but only transiently [3.0 ± 0.9 h]) or EAH (0%). The athletes were not dehydrated, shown by the absence of significant body mass loss (− 0.92 ± 2.13%) and modifications of plasma osmolality and an increase in plasma volume (+ 19.5 ± 15.8%). Performance (distance ran) positively correlated with energy intake (ρ = 0.674, p = 0.023) and negatively (ρ = − 0.776, p = 0.005) with fluid intake. Conclusions Overall, almost all of these elite 24-h ultramarathoners surpassed the nutritional recommendations without encountering significant or the usual adverse effects.
Collapse
Affiliation(s)
- Chloé Lavoué
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Julien Siracusa
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Émeric Chalchat
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, 1 place Général Valérie André, 91223, Bretigny-Sur-Orge, France. .,LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France.
| |
Collapse
|