1
|
Wolf M, Androulakis Korakakis P, Piñero A, Mohan AE, Hermann T, Augustin F, Sapuppo M, Lin B, Coleman M, Burke R, Nippard J, Swinton PA, Schoenfeld BJ. Lengthened partial repetitions elicit similar muscular adaptations as full range of motion repetitions during resistance training in trained individuals. PeerJ 2025; 13:e18904. [PMID: 39959841 PMCID: PMC11829627 DOI: 10.7717/peerj.18904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Resistance training using different ranges of motion may produce varying effects on musclular adaptations. The purpose of this study was to compare the effects of lengthened partial repetitions (LPs) vs. full range of motion (ROM) resistance training (RT) on muscular adaptations. Methods In this within-participant study, thirty healthy, resistance-trained participants had their upper extremities randomly assigned to either a lengthened partial or full ROM condition; all other training variables were equivalent between limbs. The RT intervention was an 8-week program targeting upper-body musculature. Training consisted of two training sessions per week, with four exercises per session and four sets per exercise. Muscle hypertrophy of the elbow flexors and elbow extensors was evaluated using B-mode ultrasonography at 45% and 55% of humeral length. Muscle strength-endurance was assessed using a 10-repetition-maximum test on the lat pulldown exercise, both with a partial and full ROM. Data analysis employed a Bayesian framework with inferences made from posterior distributions and the strength of evidence for the existence of a difference through Bayes factors. Results Both muscle thickness and unilateral lat pulldown 10-repetition-maximum improvements were similar between the two conditions. Results were consistent across outcomes with point estimates close to zero, and Bayes factors (0.16 to 0.3) generally providing "moderate" support for the null hypothesis of equal improvement across interventions. Conclusions Trainees seeking to maximize muscle size should likely emphasize the stretched position, either by using a full ROM or LPs during upper-body resistance training. For muscle strength-endurance, our findings suggest that LPs and full ROM elicit similar adaptations.
Collapse
Affiliation(s)
- Milo Wolf
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Patroklos Androulakis Korakakis
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Alec Piñero
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Adam E Mohan
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Tom Hermann
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Francesca Augustin
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Max Sapuppo
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Brian Lin
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Max Coleman
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Ryan Burke
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| | - Jeff Nippard
- STRCNG Incorporated OA Jeff Nippard Fitness, Oakville, Canada
| | - Paul A Swinton
- School of Health, The Robert Gordon University, Aberdeen, United Kingdom
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, City University of New York, Herbert H. Lehman College, New York City, United States
| |
Collapse
|
2
|
Hinks A, Jacob KBE, Patterson MA, Dalton BE, Power GA. Residual force enhancement decreases when scaling from the single muscle fiber to joint level in humans. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:101000. [PMID: 39454825 PMCID: PMC11863329 DOI: 10.1016/j.jshs.2024.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Residual force enhancement (rFE), defined as increased isometric force following active lengthening compared to a fixed-end isometric contraction at the same muscle length and level of activation, is present across all scales of muscle. While rFE is always present at the cellular level, often rFE "non-responders" are observed during joint-level voluntary contractions. METHODS We compared rFE between the joint level and single fiber level (vastus lateralis biopsies) in 16 young males. In vivo voluntary knee-extensor rFE was measured by comparing steady-state isometric torque between a stretch-hold (maximal activation at 150°, stretch to 70°, hold) and a fixed-end isometric contraction, with ultrasonographic recording of vastus lateralis fascicle length (FL). Fixed-end contractions were performed at 67.5°, 70.0°, 72.5°, and 75.0°; the joint angle that most closely matched FL of the stretch-hold contraction's isometric steady-state was used to calculate rFE. The starting and ending FLs of the stretch-hold contraction were expressed as % optimal FL, determined via torque-angle relationship. RESULTS In single fiber experiments, the starting and ending fiber lengths were matched relative to optimal length determined from in vivo testing, yielding an average sarcomere excursion of ∼2.2-3.4 µm. There was a greater magnitude of rFE at the single fiber (∼20%) than joint level (∼5%) (p = 0.004), with "non-responders" only observed at the joint level. CONCLUSION By comparing rFE across scales within the same participants, we show the development of the rFE non-responder phenomenon is upstream of rFE's cellular mechanisms, with rFE only lost rather than gained when scaling from single fibers to the joint level.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kaitlyn B E Jacob
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Makenna A Patterson
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Benjamin E Dalton
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
3
|
Tecchio P, Raiteri BJ, Hahn D. Eccentric exercise ≠ eccentric contraction. J Appl Physiol (1985) 2024; 136:954-965. [PMID: 38482578 DOI: 10.1152/japplphysiol.00845.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
Whether eccentric exercise involves active fascicle stretch is unclear due to muscle-tendon unit (MTU) series compliance. Therefore, this study investigated the impact of changing the activation timing and level (i.e., preactivation) of the contraction on muscle fascicle kinematics and kinetics of the human tibialis anterior during dynamometer-controlled maximal voluntary MTU-stretch-hold contractions. B-mode ultrasound and surface electromyography were used to assess muscle fascicle kinematics and muscle activity levels, respectively. Although joint kinematics were similar among MTU-stretch-hold contractions (∼40° rotation amplitude), increasing preactivation increased fascicle shortening and stretch amplitudes (9.9-23.2 mm, P ≤ 0.015). This led to increasing positive and negative fascicle work with increasing preactivation. Despite significantly different fascicle kinematics, similar peak fascicle forces during stretch occurred at similar fascicle lengths and joint angles regardless of preactivation. Similarly, residual force enhancement (rFE) following MTU stretch was not significantly affected (6.5-7.6%, P = 0.559) by preactivation, but rFE was strongly correlated with peak fascicle force during stretch (rrm = 0.62, P = 0.003). These findings highlight that apparent eccentric exercise causes shortening-stretch contractions at the fascicle level rather than isolated eccentric contractions. The constant rFE despite different fascicle kinematics and kinetics suggests that a passive element was engaged at a common muscle length among conditions (e.g., optimal fascicle length). Although it remains unclear whether different fascicle mechanics trigger different adaptations to eccentric exercise, this study emphasizes the need to consider MTU series compliance to better understand the mechanical drivers of adaptation to exercise.NEW & NOTEWORTHY Apparent eccentric exercises do not result in isolated eccentric contractions, but shortening-stretch contractions at the fascicle level. The amount of fascicle shortening and stretch depends on the preactivation during the exercise and cannot be estimated from the muscle-tendon unit (MTU) or joint kinematics. As different fascicle mechanics might trigger different adaptations to eccentric exercise, muscle-tendon unit series compliance and muscle preactivation need to be considered when eccentric exercise protocols are designed.
Collapse
Affiliation(s)
- Paolo Tecchio
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Brent J Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Hinks A, Franchi MV, Power GA. Ultrasonographic measurements of fascicle length overestimate adaptations in serial sarcomere number. Exp Physiol 2023; 108:1308-1324. [PMID: 37608723 PMCID: PMC10988429 DOI: 10.1113/ep091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Ultrasound-derived measurements of muscle fascicle length (FL) are often used to infer increases (chronic stretch or training) or decreases (muscle disuse or aging) in serial sarcomere number (SSN). Whether FL adaptations measured via ultrasound can truly approximate SSN adaptations has not been investigated. We casted the right hindlimb of 15 male Sprague-Dawley rats in a dorsiflexed position (i.e., stretched the plantar flexors) for 2 weeks, with the left hindlimb serving as a control. Ultrasound images of the soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) were obtained with the ankle at 90° and full dorsiflexion for both hindlimbs pre and post-cast. Following post-cast ultrasound measurements, legs were fixed in formalin with the ankle at 90°, then muscles were dissected and fascicles were teased out for measurement of sarcomere lengths via laser diffraction and calculation of SSN. Ultrasound detected an 11% increase in soleus FL, a 12% decrease in LG FL, and an 8-11% increase in MG FL for proximal fascicles and at full dorsiflexion. These adaptations were partly reflected by SSN adaptations, with a 6% greater soleus SSN in the casted leg than the un-casted leg, but no SSN differences for the gastrocnemii. Weak relationships were observed between ultrasonographic measurements of FL and measurements of FL and SSN from dissected fascicles. Our results showed that ultrasound-derived FL measurements can overestimate an increase in SSN by ∼5%. Future studies should be cautious when concluding a large magnitude of sarcomerogenesis from ultrasound-derived FL measurements, and may consider applying a correction factor. NEW FINDINGS: What is the central question of this study? Measurements of muscle fascicle length via ultrasound are often used to infer changes in serial sarcomere number, such as increases following chronic stretch or resistance training, and decreases with ageing: does ultrasound-derived fascicle length accurately depict adaptations in serial sarcomere number? What is the main finding and its importance? Ultrasound detected an ∼11% increase in soleus fascicle length, but measurements on dissected fascicles showed the actual serial sarcomere number increase was only ∼6%; therefore, measurements of ultrasound-derived fascicle length can overestimate serial sarcomere number adaptations by as much as 5%.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Martino V. Franchi
- Department of Biomedical Sciences, Human Neuromuscular Physiology LaboratoryUniversity of PaduaPaduaItaly
- CIR‐MYO Myology CentreUniversity of PaduaPaduaItaly
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
5
|
Hahn D, Han SW, Joumaa V. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications. J Biomech 2023; 152:111579. [PMID: 37054597 DOI: 10.1016/j.jbiomech.2023.111579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The cross-bridge theory predicts that muscle force is determined by muscle length and the velocity of active muscle length changes. However, before the formulation of the cross-bridge theory, it had been observed that the isometric force at a given muscle length is enhanced or depressed depending on active muscle length changes before that given length is reached. These enhanced and depressed force states are termed residual force enhancement (rFE) and residual force depression (rFD), respectively, and together they are known as the history-dependent features of muscle force production. In this review, we introduce early attempts in explaining rFE and rFD before we discuss more recent research from the past 25 years which has contributed to a better understanding of the mechanisms underpinning rFE and rFD. Specifically, we discuss the increasing number of findings on rFE and rFD which challenge the cross-bridge theory and propose that the elastic element titin plays a role in explaining muscle history-dependence. Accordingly, new three-filament models of force production including titin seem to provide better insight into the mechanism of muscle contraction. Complementary to the mechanisms behind muscle history-dependence, we also show various implications for muscle history-dependence on in-vivo human muscle function such as during stretch-shortening cycles. We conclude that titin function needs to be better understood if a new three-filament muscle model which includes titin, is to be established. From an applied perspective, it remains to be elucidated how muscle history-dependence affects locomotion and motor control, and whether history-dependent features can be changed by training.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University, Bochum, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Germany.
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| |
Collapse
|
6
|
Contento VS, Power GA. Eccentric exercise-induced muscle weakness amplifies the history dependence of force. Eur J Appl Physiol 2023; 123:749-767. [PMID: 36447012 DOI: 10.1007/s00421-022-05105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Following active lengthening or shortening contractions, isometric steady-state torque is increased (residual force enhancement; rFE) or decreased (residual force depression; rFD), respectively, compared to fixed-end isometric contractions at the same muscle length and level of activation. Though the mechanisms underlying this history dependence of force have been investigated extensively, little is known about the influence of exercise-induced muscle weakness on rFE and rFD. PURPOSE Assess rFE and rFD in the dorsiflexors at 20%, 60%, and 100% maximal voluntary torque (MVC) and activation matching, and electrically stimulated at 20% MVC, prior to, 1 h following, and 24 h following 150 maximal eccentric dorsiflexion contractions. METHODS Twenty-six participants (13 male, 24.7 ± 2.0y; 13 female, 22.5 ± 3.6y) were seated in a dynamometer with their right hip and knee angle set to 110° and 140°, respectively, with an ankle excursion set between 0° and 40° plantar flexion (PF). MVC torque, peak twitch torque, and prolonged low frequency force depression were used to assess eccentric exercise-induced neuromuscular impairments. History-dependent contractions consisted of a 1 s isometric (40°PF or 0°PF) phase, a 1 s shortening or lengthening phase (40°/s), and an 8 s isometric (0°PF or 40°PF) phase. RESULTS Following eccentric exercise; MVC torque was decreased, prolonged low frequency force depression was present, and both rFE and rFD increased for all maximal and submaximal conditions. CONCLUSIONS The history dependence of force during voluntary torque and activation matching, and electrically stimulated contractions is amplified following eccentric exercise. It appears that a weakened neuromuscular system amplifies the magnitude of the history-dependence of force.
Collapse
Affiliation(s)
- Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Jodoin HL, Hinks A, Roussel OP, Contento VS, Dalton BH, Power GA. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023:S2095-2546(23)00014-5. [PMID: 36801454 PMCID: PMC10362487 DOI: 10.1016/j.jshs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Females are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions. METHODS We investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18-30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively. RESULTS Males were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males. CONCLUSION This increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.
Collapse
Affiliation(s)
- Hanna L Jodoin
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
8
|
Jacob KBE, Hinks A, Power GA. The day-to-day reliability of residual force enhancement during voluntary and electrically stimulated contractions. Appl Physiol Nutr Metab 2023; 48:183-197. [PMID: 36473169 DOI: 10.1139/apnm-2022-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Residual force enhancement (rFE) is characterized by increased steady-state isometric force following active muscle lengthening compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. Many studies have characterized rFE in humans; however, the day-to-day reliability of rFE is unclear. We aimed to examine day-to-day reliability of rFE across various contraction types in the dorsiflexors in males and females. Twenty-five recreationally active young adults completed two visits, 1 week apart. Following determination of maximum voluntary contraction (MVC) strength, rFE was assessed during maximal voluntary effort, 20% MVC electrically stimulated, and 20% MVC torque-matching conditions. Each rFE condition was completed at two joint excursions: 0°-20° plantar flexion (PF) and 0°-40° PF. Intraclass correlation coefficients (ICC) assessed relative reliability and typical error of measurement (TEM), and the correlation variability of TEM (CVTEM) assessed absolute reliability. Electrically stimulated contractions demonstrated the highest reliability at 40° PF (ICC: 0.9; CVTEM: 22.8%) and 20° PF (ICC: 0.8; CVTEM: 34.3%), followed by maximal voluntary contractions at 40° PF (ICC: 0.7; CVTEM: 55.1%) and 20° PF (ICC: 0.1; CVTEM: 81.1%). The torque-matching trials showed poor reliability for 20° and 40° PF (ICC: -0.1 to 0.3; CVTEM: 118.1%-155.2%). Our results demonstrate higher reliability of rFE when stretching to the descending limb of the torque-angle relationship compared with the plateau region, and in electrically stimulated compared with voluntary contractions in the dorsiflexors for both males and females.
Collapse
Affiliation(s)
- Kaitlyn B E Jacob
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol (1985) 2022; 133:87-103. [DOI: 10.1152/japplphysiol.00114.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has the remarkable ability to remodel and adapt, such as the increase in serial sarcomere number (SSN) or fascicle length (FL) observed after overstretching a muscle. This type of remodelling is termed longitudinal muscle fascicle growth, and its impact on biomechanical function has been of interest since the 1960s due to its clinical applications in muscle strain injury, muscle spasticity, and sarcopenia. Despite simplified hypotheses on how longitudinal muscle fascicle growth might influence mechanical function, existing literature presents conflicting results partly due to a breadth of methodologies. The purpose of this review is to outline what is currently known about the influence of longitudinal muscle fascicle growth on mechanical function and suggest future directions to address current knowledge gaps and methodological limitations. Various interventions indicate longitudinal muscle fascicle growth can increase the optimal muscle length for active force, but whether the whole force-length relationship widens has been less investigated. Future research should also explore the ability for longitudinal fascicle growth to broaden the torque-angle relationship's plateau region, and the relation to increased force during shortening. Without a concurrent increase in intramuscular collagen, longitudinal muscle fascicle growth also reduces passive tension at long muscle lengths; further research is required to understand whether this translates to increased joint range of motion. Lastly, some evidence suggests longitudinal fascicle growth can increase maximum shortening velocity and peak isotonic power, however, there has yet to be direct assessment of these measures in a neurologically intact model of longitudinal muscle fascicle growth.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martino V. Franchi
- Department of Biomedical Sciences,, University of Padua, Padova, Veneto, Italy
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Davidson B, Hinks A, Dalton BH, Akagi R, Power GA. Power attenuation from restricting range of motion is minimized in subjects with fast RTD and following isometric training. J Appl Physiol (1985) 2022; 132:497-510. [PMID: 35023762 DOI: 10.1152/japplphysiol.00688.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.
Collapse
Affiliation(s)
- Brooke Davidson
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Ryota Akagi
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.,College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
de Campos D, Orssatto LBR, Trajano GS, Herzog W, Fontana HDB. Residual force enhancement in human skeletal muscles: A systematic review and meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:94-103. [PMID: 34062271 PMCID: PMC8847921 DOI: 10.1016/j.jshs.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
OBJECTIVE We reviewed and appraised the existing evidence of in vivo manifestations of residual force enhancement in human skeletal muscles and assessed, through a meta-analysis, the effect of an immediate history of eccentric contraction on the subsequent torque capacity of voluntary and electrically evoked muscle contractions. METHODS Our search was conducted from database inception to May 2020. Descriptive information was extracted from, and quality was assessed for, 45 studies. Meta-analyses and metaregressions were used to analyze residual torque enhancement and its dependence on the angular amplitude of the preceding eccentric contraction. RESULTS Procedures varied across studies with regards to muscle group tested, angular stretch amplitude, randomization of contractions, time window analyzed, and verbal command. Torque capacity in isometric (constant muscle tendon unit length and joint angle) contractions preceded by an eccentric contraction was typically greater compared to purely isometric contractions, and this effect was greater for electrically evoked muscle contractions than voluntary contractions. Residual torque enhancement differed across muscle groups for the voluntary contractions, with a significant enhancement in torque observed for the adductor pollicis, ankle dorsiflexors, ankle plantar flexors, and knee extensors, but not for the elbow and knee flexors. Meta-regressions revealed that the angular amplitude of the eccentric contraction (normalized to the respective joint's full range of motion) was not associated with the residual torque enhancement observed. CONCLUSION There is evidence of residual torque enhancement for most, but not all, muscle groups, and residual torque enhancement is greater for electrically evoked than for voluntary contractions. Contrary to our hypothesis, and contrary to generally accepted findings on isolated muscle preparations, residual torque enhancement in voluntary and electrically evoked contractions does not seem to depend on the angular amplitude of the preceding eccentric contraction.
Collapse
Affiliation(s)
- Daiani de Campos
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianopolis 88040-001, Brazil
| | - Lucas B R Orssatto
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane QLD 4030, Australia
| | - Gabriel S Trajano
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane QLD 4030, Australia
| | - Walter Herzog
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianopolis 88040-001, Brazil; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB T2N 1N4, Canada
| | - Heiliane de Brito Fontana
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianopolis 88040-001, Brazil; School of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil.
| |
Collapse
|
12
|
Paternoster FK, Holzer D, Arlt A, Schwirtz A, Seiberl W. Residual force enhancement in humans: Is there a true non-responder? Physiol Rep 2021; 9:e14944. [PMID: 34337885 PMCID: PMC8327164 DOI: 10.14814/phy2.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022] Open
Abstract
When an active muscle is stretched and kept isometrically active, the resulting force is enhanced compared to a purely isometric reference contraction at the same muscle length and activity; a generally accepted muscle property called residual force enhancement (rFE). Interestingly, studies on voluntary muscle action regularly identify a significant number of participants not showing rFE. Therefore, the aim was to unmask possible confounders for this non-responsive behavior. Ten participants performed maximum voluntary isometric plantarflexion contractions with and without preceding stretch. Contractions were accompanied by the assessment of voluntary activation using the twitch-interpolation technique. The same test protocol was repeated four additional times with a least on day rest in-between. Additionally, at the first and fifth sessions, a submaximal tetanic muscle-stimulation condition was added. At both muscle-stimulation sessions mean rFE higher 10% (p < 0.028) was found. In contrast, during voluntary muscle action, individual participants showed inconsistent rFE across sessions and only one session (#3) had significant rFE (5%; p = 0.023) in group means. As all participants clearly had rFE in electrical stimulation conditions, structural deficits cannot explain the missing rFE in voluntary muscle action. However, we also did not find variability in voluntary activation levels or muscle activity as the confounding characteristics of "non-responders."
Collapse
Affiliation(s)
- Florian K. Paternoster
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Denis Holzer
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Anna Arlt
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Ansgar Schwirtz
- Department of Sport and Health SciencesBiomechanics in SportsTechnical University of MunichMunichGermany
| | - Wolfgang Seiberl
- Department of Human SciencesHuman Movement ScienceBundeswehr University MunichNeubibergGermany
| |
Collapse
|
13
|
Chapman ND, Whitting JW, Broadbent S, Crowley-McHattan ZJ, Meir R. Residual Force Enhancement Is Present in Consecutive Post-Stretch Isometric Contractions of the Hamstrings during a Training Simulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1154. [PMID: 33525530 PMCID: PMC7908171 DOI: 10.3390/ijerph18031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
Residual force enhancement (rFE) is observed when isometric force following an active stretch is elevated compared to an isometric contraction at corresponding muscle lengths. Acute rFE has been confirmed in vivo in upper and lower limb muscles. However, it is uncertain whether rFE persists using multiple, consecutive contractions as per a training simulation. Using the knee flexors, 10 recreationally active participants (seven males, three females; age 31.00 years ± 8.43 years) performed baseline isometric contractions at 150° knee flexion (180° representing terminal knee extension) of 50% maximal voluntary activation of semitendinosus. Participants performed post-stretch isometric (PS-ISO) contractions (three sets of 10 repetitions) starting at 90° knee extension with a joint rotation of 60° at 60°·s-1 at 50% maximal voluntary activation of semitendinosus. Baseline isometric torque and muscle activation were compared to PS-ISO torque and muscle activation across all 30 repetitions. Significant rFE was noted in all repetitions (37.8-77.74%), with no difference in torque between repetitions or sets. There was no difference in activation of semitendinosus or biceps femoris long-head between baseline and PS-ISO contractions in all repetitions (ST; baseline ISO = 0.095-1.000 ± 0.036-0.039 Mv, PS-ISO = 0.094-0.098 ± 0.033-0.038 and BFlh; baseline ISO = 0.068-0.075 ± 0.031-0.038 Mv). This is the first investigation to observe rFE during multiple, consecutive submaximal PS-ISO contractions. PS-ISO contractions have the potential to be used as a training stimulus.
Collapse
Affiliation(s)
- Neil D. Chapman
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW 2480, Australia; (J.W.W.); (S.B.); (Z.J.C.-M.); (R.M.)
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - John W. Whitting
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW 2480, Australia; (J.W.W.); (S.B.); (Z.J.C.-M.); (R.M.)
| | - Suzanne Broadbent
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW 2480, Australia; (J.W.W.); (S.B.); (Z.J.C.-M.); (R.M.)
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Zachary J. Crowley-McHattan
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW 2480, Australia; (J.W.W.); (S.B.); (Z.J.C.-M.); (R.M.)
| | - Rudi Meir
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW 2480, Australia; (J.W.W.); (S.B.); (Z.J.C.-M.); (R.M.)
| |
Collapse
|
14
|
Mashouri P, Chen J, Noonan AM, Brown SHM, Power GA. Modifiability of residual force depression in single muscle fibers following uphill and downhill training in rats. Physiol Rep 2021; 9:e14725. [PMID: 33502825 PMCID: PMC7839327 DOI: 10.14814/phy2.14725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022] Open
Abstract
Following active muscle shortening, steady-state isometric force is less than a purely isometric contraction at the same muscle length and level of activation; this is known as residual force depression (rFD). It is unknown whether rFD at the single muscle fiber level can be modified via training. Here we investigated whether rFD in single muscle fibers is modifiable through downhill and uphill running in the extensor digitorum longus (EDL) and soleus (SOL) muscles in rats. Rats were run uphill or downhill 5 days/week for 4 weeks. After muscles were dissected and chemically permeabilized, single fibers were tied between a length controller and force transducer, transferred to an activating solution, with ATP and pCa of 4.2 for mechanical testing. rFD was quantified after active fiber shortening from an average sarcomere length (SL) of 3.1-2.5 µm at a relative speed of 0.15 fiber lengths/s (slow) and 0.6 fiber lengths/s (fast). rFD was calculated as the difference in force (normalized to cross-sectional area) during the isometric steady-state phase following active shortening and the purely isometric contraction. In addition to rFD, mechanical work of shortening and stiffness depression were also calculated. rFD was present for both the EDL (6-15%) and SOL (1-2%) muscles, with no effect of training. rFD was greater for the EDL than SOL which closely corresponded to the greater stiffness depression in the EDL, indicating a greater inhibition of cross-bridge attachments. These results indicate that while rFD was observed, training did not appear to alter this intrinsic history-dependent property of single muscle fibers.
Collapse
Affiliation(s)
- Parastoo Mashouri
- Department of Human Health and Nutritional SciencesCollege of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Jackey Chen
- Department of Human Health and Nutritional SciencesCollege of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Alex M. Noonan
- Department of Human Health and Nutritional SciencesCollege of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional SciencesCollege of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A. Power
- Department of Human Health and Nutritional SciencesCollege of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|