1
|
Bergamasco JGA, Scarpelli MC, Godwin JS, Mesquita PHC, Chaves TS, da Silva DG, Bittencourt D, Dias NF, Medalha RA, Carello Filho PC, Angleri V, Costa LAR, Michel JM, Vechin FC, Kavazis AN, Ugrinowitsch C, Roberts MD, Libardi CA. Androgen receptor markers do not differ between nonresponders and responders to resistance training-induced muscle hypertrophy. J Appl Physiol (1985) 2024; 137:910-918. [PMID: 39143904 DOI: 10.1152/japplphysiol.00354.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
The aim of this study was to investigate whether baseline values and acute and chronic changes in androgen receptors (AR) markers, including total AR, cytoplasmic (cAR), and nuclear (nAR) fractions, as well as DNA-binding activity (AR-DNA), are involved in muscle hypertrophy responsiveness by comparing young nonresponder and responder individuals. After 10 wk of resistance training (RT), participants were identified as nonresponders using two typical errors (TE) obtained through two muscle cross-sectional area (mCSA) ultrasound measurements (2 × TE; 4.94%), and the highest responders within our sample were numerically matched. Muscle biopsies were performed at baseline, 24 h after the first RT session (acute responses), and 96 h after the last session (chronic responses). AR, cAR, and nAR were analyzed using Western blotting, and AR-DNA was analyzed using an ELISA-oligonucleotide assay. Twelve participants were identified as nonresponders (ΔmCSA: -1.32%) and 12 as responders (ΔmCSA: 21.35%). There were no baseline differences between groups in mCSA, AR, cAR, nAR, or AR-DNA (P > 0.05). For acute responses, there was a significant difference between nonresponders (+19.5%) and responders (-14.4%) in AR-DNA [effect size (ES) = -1.39; 95% confidence interval (CI): -2.53 to -0.16; P = 0.015]. There were no acute between-group differences in any other AR markers (P > 0.05). No significant differences between groups were observed in chronic responses across any AR markers (P > 0.05). Nonresponders and responders presented similar baseline, acute, and chronic results for the majority of the AR markers. Thus, our findings do not support the influence of AR markers on muscle hypertrophy responsiveness to RT in untrained individuals.NEW & NOTEWORTHY We explored, for the first time, the influence of androgen receptor (AR) through the separation of cytoplasmic and nuclear cell fractions [i.e., cytoplasmic androgen receptor (cAR), nuclear androgen receptor (nAR), and androgen receptor DNA-binding activity (AR-DNA)] on muscle hypertrophy responsiveness to resistance training. The absence of muscle hypertrophy in naïve individuals does not seem to be explained by baseline values, and acute or chronic changes in AR markers.
Collapse
Affiliation(s)
- João G A Bergamasco
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Maíra C Scarpelli
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paulo H C Mesquita
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Talisson S Chaves
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Deivid G da Silva
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Diego Bittencourt
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Nathalia F Dias
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ricardo A Medalha
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Paulo C Carello Filho
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Vitor Angleri
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Luiz A R Costa
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - J Max Michel
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Felipe C Vechin
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
2
|
Chaves TS, Scarpelli MC, Bergamasco JGA, Silva DGD, Medalha Junior RA, Dias NF, Bittencourt D, Carello Filho PC, Angleri V, Nóbrega SR, Roberts MD, Ugrinowitsch C, Libardi CA. Effects of Resistance Training Overload Progression Protocols on Strength and Muscle Mass. Int J Sports Med 2024; 45:504-510. [PMID: 38286426 DOI: 10.1055/a-2256-5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The aim of this study was to compare the effects of progressive overload in resistance training on muscle strength and cross-sectional area (CSA) by specifically comparing the impact of increasing load (LOADprog) versus an increase in repetitions (REPSprog). We used a within-subject experimental design in which 39 previously untrained young persons (20 men and 19 women) had their legs randomized to LOADprog and REPSprog. Outcomes were assessed before and after 10 weeks of training. Muscle strength was assessed using the one repetition maximum (1RM) test on the leg extension exercise, and the CSA of the vastus lateralis was assessed by ultrasonography. Both protocols increased 1RM values from pre (LOADprog: 52.90±16.32 kg; REPSprog: 51.67±15.84 kg) to post (LOADprog: 69.05±18.55 kg, REPSprog: 66.82±17.95 kg), with no difference between them (P+>+0.05). Similarly, both protocols also increased in CSA values from pre (LOADprog: 21.34±4.71 cm²; REPSprog: 21.08±4.62 cm²) to post (LOADprog: 23.53±5.41 cm², REPSprog: 23.39±5.19 cm²), with no difference between them (P+>+0.05). In conclusion, our findings indicate that the progression of overload through load or repetitions can be used to promote gains in strength and muscle hypertrophy in young men and women in the early stages of training.
Collapse
Affiliation(s)
- Talisson Santos Chaves
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Maíra Camargo Scarpelli
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - João Guilherme Almeida Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Deivid Gomes da Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Ricardo Alessandro Medalha Junior
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Nathalia Fernanda Dias
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Paulo Cesar Carello Filho
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Sanmy Rocha Nóbrega
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | | | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Department of Health Sciences and Human Performance, The University of Tampa, FL, USA
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| |
Collapse
|
3
|
Salter D, Swamy S, Salis KM, Deep DK, Nadig P. A botanical extract blend of Mangifera indica and Sphaeranthus indicus combined with resistance exercise training improves muscle strength and endurance over exercise alone in young men: a randomized, blinded, placebo-controlled trial. Front Nutr 2024; 11:1393917. [PMID: 38765822 PMCID: PMC11099261 DOI: 10.3389/fnut.2024.1393917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Resistance exercise training (RET) is used to improve muscular strength and function. This study tested the hypothesis that RET alongside daily supplementation of a Sphaeranthus indicus and Mangifera indica extract blend (SMI) would augment bench press (BP) and leg extension (LE) strength and repetitions to failure (RTF) compared to RET alone. Ninety-nine men (age 22 ± 3) completed the trial after randomization into one of four groups: (A1) 425 mg SMI plus one RET set; (A2) 850 mg SMI plus one RET set; (P1) placebo plus one RET set; and (P2) placebo plus two RET sets. RET sets were 6-8 BP and LE repetitions at 80% of a progressive one repetition maximum (1-RM), performed 3x/week for 8 weeks. Strength and RTF were evaluated at baseline and days 14, 28, and 56 while serum values of total testosterone (TT), free testosterone (FT), and cortisol (C) values were evaluated at baseline and day 56. RET significantly (p < 0.05) increased 1-RM, RTF, and T measures above baselines regardless of group assignment, but the increases were greater in the supplemented groups. At week 8, A1 bench pressed more than P1 (71.5.5 ± 17.5 kg vs. 62.0 ± 15.3 kg, p = 0.003), while A2 pressed 13.8 ± 3.0 kg more (95% CI 5.7-21.8, p < 0.001) than P1 and 9.9 ± 13.0 kg more (95% CI 1.7-18.2, p = 0.01) than P2. Also at week 8, the mean LE 1-RM of A1 (159.4 ± 22.6 kg) and A2 (162.2 ± 22.9 kg) was greater (p < 0.05) than that of P1 (142.2 ± 25.6 kg) and P2 (146.5 ± 19.7 kg). Supplementation improved RTF, TT, and FT values over those measured in exercise alone (p < 0.05), while C levels in A2 (9.3 ± 3.8 μg/dL) were lower than P2 (11.7 ± 3.8 μg/dL, p < 0.05). Daily supplementation with SMI was well tolerated and may help optimize muscle adaptive responses to RET in men.
Collapse
Affiliation(s)
- Dawna Salter
- Department of Clinical Research and Innovation, PLT Health Solutions, Inc., Morristown, NJ, United States
| | - Shubhatara Swamy
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| | - Kevin Manohar Salis
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| | | | - Pratibha Nadig
- Department of Pharmacology, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| |
Collapse
|
4
|
McIntosh MC, Anglin DA, Robinson AT, Beck DT, Roberts MD. Making the case for resistance training in improving vascular function and skeletal muscle capillarization. Front Physiol 2024; 15:1338507. [PMID: 38405119 PMCID: PMC10884331 DOI: 10.3389/fphys.2024.1338507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Through decades of empirical data, it has become evident that resistance training (RT) can improve strength/power and skeletal muscle hypertrophy. Yet, until recently, vascular outcomes have historically been underemphasized in RT studies, which is underscored by several exercise-related reviews supporting the benefits of endurance training on vascular measures. Several lines of evidence suggest large artery diameter and blood flow velocity increase after a single bout of resistance exercise, and these events are mediated by vasoactive substances released from endothelial cells and myofibers (e.g., nitric oxide). Weeks to months of RT can also improve basal limb blood flow and arterial diameter while lowering blood pressure. Although several older investigations suggested RT reduces skeletal muscle capillary density, this is likely due to most of these studies being cross-sectional in nature. Critically, newer evidence from longitudinal studies contradicts these findings, and a growing body of mechanistic rodent and human data suggest skeletal muscle capillarity is related to mechanical overload-induced skeletal muscle hypertrophy. In this review, we will discuss methods used by our laboratories and others to assess large artery size/function and skeletal muscle capillary characteristics. Next, we will discuss data by our groups and others examining large artery and capillary responses to a single bout of resistance exercise and chronic RT paradigms. Finally, we will discuss RT-induced mechanisms associated with acute and chronic vascular outcomes.
Collapse
Affiliation(s)
| | - Derick A. Anglin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine–Auburn Campus, Auburn, AL, United States
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine–Auburn Campus, Auburn, AL, United States
| |
Collapse
|
5
|
Lixandrão ME, Bamman M, Vechin FC, Conceicao MS, Telles G, Longobardi I, Damas F, Lavin KM, Drummer DJ, McAdam JS, Dungan CM, Leitão AE, Riani Costa LA, Aihara AY, Libardi CA, Gualano B, Roschel H. Higher resistance training volume offsets muscle hypertrophy nonresponsiveness in older individuals. J Appl Physiol (1985) 2024; 136:421-429. [PMID: 38174375 DOI: 10.1152/japplphysiol.00670.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
The magnitude of muscle hypertrophy in response to resistance training (RT) is highly variable between individuals (response heterogeneity). Manipulations in RT variables may modulate RT-related response heterogeneity; yet, this remains to be determined. Using a within-subject unilateral design, we aimed to investigate the effects of RT volume manipulation on whole muscle hypertrophy [quadriceps muscle cross-sectional area (qCSA)] among nonresponders and responders to a low RT dose (single-set). We also investigated the effects of RT volume manipulation on muscle strength in these responsiveness groups. Eighty-five older individuals [41M/44F, age = 68 ± 4 yr; body mass index (BMI) = 26.4 ± 3.7 kg/m2] had one leg randomly allocated to a single (1)-set and the contralateral leg allocated to four sets of unilateral knee-extension RT at 8-15 repetition maximum (RM) for 10-wk 2 days/wk. Pre- and postintervention, participants underwent magnetic resonance imaging (MRI) and unilateral knee-extension 1-RM strength testing. MRI typical error (2× TE = 3.27%) was used to classify individuals according to responsiveness patterns. n = 51 were classified as nonresponders (≤2× TE) and n = 34 as responders (>2× TE) based on pre- to postintervention change qCSA following the single-set RT protocol. Nonresponders to single-set training showed a dose response, with significant time × set interactions for qCSA and 1-RM strength, indicating greater gains in response to the higher volume prescription (time × set: P < 0.05 for both outcomes). Responders improved qCSA (time: P < 0.001), with a tendency toward higher benefit from the four sets RT protocol (time × set: P = 0.08); on the other hand, 1-RM increased similarly irrespectively of RT volume prescription (time × set: P > 0.05). Our findings support the use of higher RT volume to mitigate nonresponsiveness among older adults.NEW & NOTEWORTHY Using a within-subject unilateral design, we demonstrated that increasing resistance training (RT) volume may be a simple, effective strategy to improve muscle hypertrophy and strength gains among older adults who do not respond to low-volume RT. In addition, it could most likely be used to further improve hypertrophic outcomes in responders.
Collapse
Affiliation(s)
- Manoel E Lixandrão
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcas Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Felipe C Vechin
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Miguel S Conceicao
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Guilherme Telles
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe Damas
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Devin J Drummer
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cory M Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alice E Leitão
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Luiz A Riani Costa
- School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - André Y Aihara
- Diagnostic Imaging Department, Universidade Federal de Sao Paulo-Escola Paulista de Medicina, São Paulo, Brazil
- Diagnósticos da América S.A. (DASA)/Laboratório Delboni, São Paulo, Brazil
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group-School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Center of Lifestyle Medicine; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
7
|
Godwin JS, Sexton CL, Kontos NJ, Ruple BA, Willoughby DS, Young KC, Mobley CB, Roberts MD. Extracellular matrix content and remodeling markers do not differ in college-aged men classified as higher and lower responders to resistance training. J Appl Physiol (1985) 2023; 134:731-741. [PMID: 36759158 DOI: 10.1152/japplphysiol.00596.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We determined if skeletal muscle extracellular matrix (ECM) content and remodeling markers adapted with resistance training or were associated with hypertrophic outcomes. Thirty-eight untrained males (21 ± 3 yr) participated in whole body resistance training (10 wk, 2 × weekly). Participants completed testing [ultrasound, peripheral quantitative computed tomography (pQCT)] and donated a vastus lateralis (VL) biopsy 1 wk before training and 72 h following the last training bout. Higher responders (HR, n = 10) and lower responders (LR, n = 10) were stratified based on a composite score considering changes in pQCT-derived mid-thigh cross-sectional area (mCSA), ultrasound-derived VL thickness, and mean fiber cross-sectional area (fCSA). In all participants, training reduced matrix metalloprotease (MMP)-14 protein (P < 0.001) and increased satellite cell abundance (P < 0.001); however, VL fascial thickness, ECM protein content per myofiber, MMP-2/-9 protein content, tissue inhibitor of metalloproteinase (TIMP)-1/-2 protein content, collagen-1/-4 protein content, macrophage abundance, or fibroadipogenic progenitor cell abundance were not altered. Regarding responder analysis, MMP-14 exhibited an interaction (P = 0.007), and post hoc analysis revealed higher protein content in HR versus LR before training (P = 0.026) and a significant decrease from pre to posttraining in HR only (P = 0.002). In summary, basal skeletal muscle ECM markers are minimally affected with 10 wk of resistance training, and these findings could be related to not capturing more dynamic alterations in the assayed markers earlier in training. However, the downregulation in MMP-14 in college-aged men classified as HR is a novel finding and warrants continued investigation, and further research is needed to delineate muscle connective tissue strength attributes between HR and LR.NEW & NOTEWORTHY Although past studies have examined aspects of extracellular matrix remodeling in relation to mechanical overload or resistance training, this study serves to expand our knowledge on a multitude of extracellular matrix markers and whether these markers adapt to resistance training or are associated with differential hypertrophic responses.
Collapse
Affiliation(s)
- Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Nicholas J Kontos
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, United States
| | - Kaelin C Young
- Biomedical Sciences, Pacific Northwest University of Health Sciences, Yakima, Washington, United States
| | - C Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States.,Edward Via College of Osteopathic Medicine, Auburn, Alabama, United States
| |
Collapse
|
8
|
Ruple BA, Mesquita PHC, Godwin JS, Sexton CL, Osburn SC, McIntosh MC, Kavazis AN, Libardi CA, Young KC, Roberts MD. Changes in vastus lateralis fibre cross-sectional area, pennation angle and fascicle length do not predict changes in muscle cross-sectional area. Exp Physiol 2022; 107:1216-1224. [PMID: 36053170 PMCID: PMC9633374 DOI: 10.1113/ep090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do changes in myofibre cross-sectional area, pennation angle and fascicle length predict vastus lateralis whole-muscle cross-sectional area changes following resistance training? What is the main finding and its importance? Changes in vastus lateralis mean myofibre cross-sectional area, fascicle length and pennation angle following a period of resistance training did not collectively predict changes in whole-muscle cross-sectional area. Despite the limited sample size in this study, these data reiterate that it remains difficult to generalize the morphological adaptations that predominantly drive tissue-level vastus lateralis muscle hypertrophy. ABSTRACT Myofibre hypertrophy during resistance training (RT) poorly associates with tissue-level surrogates of hypertrophy. However, it is underappreciated that, in pennate muscle, changes in myofibre cross-sectional area (fCSA), fascicle length (Lf ) and pennation angle (PA) likely coordinate changes in whole-muscle cross-sectional area (mCSA). Therefore, we determined if changes in fCSA, PA and Lf predicted vastus lateralis (VL) mCSA changes following RT. Thirteen untrained college-aged males (23 ± 4 years old, 25.4 ± 5.2 kg/m2 ) completed 7 weeks of full-body RT (twice weekly). Right leg VL ultrasound images and biopsies were obtained prior to (PRE) and 72 h following (POST) the last training bout. Regression was used to assess if training-induced changes in mean fCSA, PA and Lf predicted VL mCSA changes. Correlations were also performed between PRE-to-POST changes in obtained variables. Mean fCSA (+18%), PA (+8%) and mCSA (+22%) increased following RT (P < 0.05), but not Lf (0.1%, P = 0.772). Changes in fCSA, Lf and PA did not collectively predict changes in mCSA (R2 = 0.282, adjusted R2 = 0.013, F3,8 = 1.050, P = 0.422). Moderate negative correlations existed for percentage changes in PA and Lf (r = -0.548, P = 0.052) and changes in fCSA and Lf (r = -0.649, P = 0.022), and all other associations were weak (|r| < 0.500). Although increases in mean fCSA, PA and VL mCSA were observed, inter-individual responses for each variable and limitations for each technique make it difficult to generalize the morphological adaptations that predominantly drive tissue-level VL muscle hypertrophy. However, the small subject pool is a significant limitation, and more research in this area is needed.
Collapse
Affiliation(s)
| | | | | | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | | | - Cleiton A Libardi
- Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA
| |
Collapse
|