1
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
2
|
An Q, Zhang RM, Wei Y, Zhang YW, Wang LY, Ma SN, Zhang EK, Zou CX, Yang SF, Shi DS, Wei YM, Deng YF. CircRRAS2 promotes myogenic differentiation of bovine MuSCs and is a novel regulatory molecule of muscle development. Anim Biotechnol 2023; 34:4783-4792. [PMID: 37022008 DOI: 10.1080/10495398.2023.2196311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The proliferation and myogenic differentiation of muscle stem cells (MuSCs) are important factors affecting muscle development and beef quality. There is increasing evidence that circRNAs can regulate myogenesis. We found a novel circRNA, named circRRAS2 that is significantly upregulated in the differentiation phase of bovine MuSCs. Here, we aimed to determine its roles in the proliferation and myogenic differentiation of these cells. The results showed that circRRAS2 was expressed in several bovine tissues. CircRRAS2 inhibited MuSCs proliferation and promoted myoblast differentiation. In addition, chromatin isolation by using RNA purification and mass spectrometry in differentiated muscle cells identified 52 RNA-binding proteins that could potentially bind to circRRAS2, in order to regulate their differentiation. The results suggest that circRRAS2 could be a specific regulator of myogenesis in bovine muscle.HighlightsCircRRAS2 expression is higher in DM cells than in GM cells.CircRRAS2 could significantly inhibit the proliferation and apoptosis of bovine MuSCs.CircRRAS2 promotes the differentiation of bovine MuSCs into myotubes.CircRRAS2 may exert regulatory effects through multiple RNA binding proteins.
Collapse
Affiliation(s)
- Qiang An
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Rui-Men Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Yao Wei
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Yong-Wang Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Le-Yi Wang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Shi-Nan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Er-Kang Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Chao-Xia Zou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Su-Fang Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - De-Shun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Ying-Ming Wei
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Yan-Fei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| |
Collapse
|
3
|
Leite CDFC, Zovico PVC, Rica RL, Barros BM, Machado AF, Evangelista AL, Leite RD, Barauna VG, Maia AF, Bocalini DS. Exercise-Induced Muscle Damage after a High-Intensity Interval Exercise Session: Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7082. [PMID: 37998313 PMCID: PMC10671292 DOI: 10.3390/ijerph20227082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
High-intensity interval training (HIIT) is considered an effective method to improve fitness and health indicators, but its high-intensity exercises and the mechanical and metabolic stress generated during the session can lead to the occurrence of exercise-induced muscle damage. Therefore, this study aimed to describe, by means of a systematic review, the effects of a single HIIT session on exercise-induced muscle damage. A total of 43 studies were found in the Medline/PubMed Science Direct/Embase/Scielo/CINAHL/LILACS databases; however, after applying the exclusion criteria, only 15 articles were considered eligible for this review. The total sample was 315 participants. Among them, 77.2% were men, 13.3% were women and 9.5 uninformed. Their age ranged from 20.1 ± 2 to 47.8 ± 7.5 years. HIIT protocols included running with ergometers (n = 6), CrossFit-specific exercises (n = 2), running without ergometers (n = 3), swimming (n = 1), the Wingate test on stationary bicycles (n = 2), and cycling (n = 1). The most applied intensity controls were %vVO2max, "all out", MV, MAV, Vmax, and HRreserve%. The most used markers to evaluate muscle damage were creatine kinase, myoglobin, and lactate dehydrogenase. The time for muscle damage assessment ranged from immediately post exercise to seven days. HIIT protocols were able to promote changes in markers of exercise-induced muscle damage, evidenced by increases in CK, Mb, LDH, AST, ALT, pain, and muscle circumference observed mainly immediately and 24 h after the HIIT session.
Collapse
Affiliation(s)
- Carine D. F. C. Leite
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29075810, ES, Brazil
| | - Paulo V. C. Zovico
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29075810, ES, Brazil
| | - Roberta L. Rica
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29075810, ES, Brazil
- Department of Physical Education, Estacio de Sá University, Vitoria 29090640, ES, Brazil
| | | | - Alexandre F. Machado
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29075810, ES, Brazil
| | | | - Richard D. Leite
- Exercise Physiology Laboratory, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29075810, ES, Brazil;
| | - Valerio G. Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043900, ES, Brazil;
| | - Adriano F. Maia
- Laboratory of Nutrition and Metabolism, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29043900, ES, Brazil;
| | - Danilo S. Bocalini
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sport Center, Federal University of Espírito Santo, Vitória 29075810, ES, Brazil
| |
Collapse
|
4
|
Pérez-Castillo ÍM, Rueda R, Bouzamondo H, López-Chicharro J, Mihic N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front Physiol 2023; 14:1167449. [PMID: 37113691 PMCID: PMC10126523 DOI: 10.3389/fphys.2023.1167449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
High-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.
Collapse
Affiliation(s)
| | | | | | - José López-Chicharro
- Real Madrid, Medical Services, Madrid, Spain
- *Correspondence: José López-Chicharro,
| | - Niko Mihic
- Real Madrid, Medical Services, Madrid, Spain
| |
Collapse
|