1
|
Wang S, Pan J, Zhang X, Li Y, Liu W, Lin R, Wang X, Kang D, Li Z, Huang F, Chen L, Chen J. Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:254. [PMID: 39277586 PMCID: PMC11401902 DOI: 10.1038/s41377-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Diagnostic pathology, historically dependent on visual scrutiny by experts, is essential for disease detection. Advances in digital pathology and developments in computer vision technology have led to the application of artificial intelligence (AI) in this field. Despite these advancements, the variability in pathologists' subjective interpretations of diagnostic criteria can lead to inconsistent outcomes. To meet the need for precision in cancer therapies, there is an increasing demand for accurate pathological diagnoses. Consequently, traditional diagnostic pathology is evolving towards "next-generation diagnostic pathology", prioritizing on the development of a multi-dimensional, intelligent diagnostic approach. Using nonlinear optical effects arising from the interaction of light with biological tissues, multiphoton microscopy (MPM) enables high-resolution label-free imaging of multiple intrinsic components across various human pathological tissues. AI-empowered MPM further improves the accuracy and efficiency of diagnosis, holding promise for providing auxiliary pathology diagnostic methods based on multiphoton diagnostic criteria. In this review, we systematically outline the applications of MPM in pathological diagnosis across various human diseases, and summarize common multiphoton diagnostic features. Moreover, we examine the significant role of AI in enhancing multiphoton pathological diagnosis, including aspects such as image preprocessing, refined differential diagnosis, and the prognostication of outcomes. We also discuss the challenges and perspectives faced by the integration of MPM and AI, encompassing equipment, datasets, analytical models, and integration into the existing clinical pathways. Finally, the review explores the synergy between AI and label-free MPM to forge novel diagnostic frameworks, aiming to accelerate the adoption and implementation of intelligent multiphoton pathology systems in clinical settings.
Collapse
Affiliation(s)
- Shu Wang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Junlin Pan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Xiao Zhang
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Yueying Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Wenxi Liu
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Ruolan Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhijun Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Feng Huang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.
| | - Liangyi Chen
- New Cornerstone Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100091, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
2
|
Li Y, Shen B, Lu Y, Shi J, Zhao Z, Li H, Hu R, Qu J, Liu L. Multidimensional quantitative characterization of the tumor microenvironment by multicontrast nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5517-5532. [PMID: 36425619 PMCID: PMC9664882 DOI: 10.1364/boe.470104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Characterization of the microenvironment features of tumors, such as its microstructures, biomolecular metabolism, and functional dynamics, may provide essential pathologic information about the tumor, tumor margin, and adjacent normal tissue for early and intraoperative diagnosis. However, it can be particularly challenging to obtain faithful and comprehensive pathological information simultaneously from unperturbed tissues due to the complexity of the microenvironment in organisms. Super-multiplex nonlinear optical imaging system emerged and matured as an attractive tool for acquisition and elucidation of the nonlinear properties correlated with tumor microenvironment. Here, we introduced a nonlinear effects-based multidimensional optical imaging platform and methodology to simultaneously and efficiently capture contrasting and complementary nonlinear optical signatures of freshly excised human skin tissues. The qualitative and quantitative analysis of autofluorescence (FAD), collagen fiber, and intracellular components (lipids and proteins) illustrated the differences about morphological changes and biomolecular metabolic processes of the epidermis and dermis in different skin carcinogenic types. Interpretation of multi-parameter stain-free histological findings complements conventional H&E-stained slides for investigating basal cell carcinoma and pigmented nevus, validates the platform's versatility and efficiency for classifying subtypes of skin carcinoma, and provides the potential to translate endogenous molecule into biomarker for assisting in rapid cancer screening and diagnosis.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuan Lu
- The Sixth People’s Hospital of Shenzhen, Shenzhen 518052, China
| | - Jinhui Shi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zewei Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huixian Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Lentsch G, Valdebran M, Saknite I, Smith J, Linden KG, König K, Barr RJ, Harris RM, Tromberg BJ, Ganesan AK, Zachary CB, Kelly KM, Balu M. Non-invasive optical biopsy by multiphoton microscopy identifies the live morphology of common melanocytic nevi. Pigment Cell Melanoma Res 2020; 33:869-877. [PMID: 32485062 PMCID: PMC7687135 DOI: 10.1111/pcmr.12902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
Multiphoton microscopy (MPM) is a promising non-invasive imaging tool for discriminating benign nevi from melanoma. In this study, we establish a MPM morphologic catalogue of common nevi, information that will be critical in devising strategies to distinguish them from nevi that are evolving to melanoma that may present with more subtle signs of malignancy. Thirty common melanocytic nevi were imaged in vivo using MPM. Quantitative parameters that can distinguish between different types of nevi were developed and confirmed by examining the histology of eleven of the imaged nevi. MPM features of nevi examined included cytologic morphology of melanocytes in the epidermis and dermis, the size and distribution of nevomelanocytes both within and around nests, the size of rete ridges, and the presence of immune cells in the dermis. Distinguishing features include cytological morphology, the size of nevomelanocytes, the size of nevomelanocyte nests, and the distribution of nevomelanocytes. Notably, these distinguishing characteristics were not easily appreciated in fixed tissues, highlighting essential differences in the morphology of live skin. Taken together, this work provides a morphologic compendium of normal nevi, information that will be critical in future studies directed at identifying melanocytic nevi that are evolving to melanoma.
Collapse
Affiliation(s)
- Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Manuel Valdebran
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Inga Saknite
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Janellen Smith
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Kenneth G Linden
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Karsten König
- Department of Biophotonics and Laser Technology, Saarland University, Saarbrucken, Germany.,JenLab GmbH, Jena, Germany
| | - Ronald J Barr
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Ronald M Harris
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, CA, USA
| | | | - Kristen M Kelly
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.,Department of Dermatology, University of California, Irvine, CA, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Abstract
Fluorescence Lifetime Imaging (FLIM) in life sciences based on ultrashort laser scanning microscopy and time-correlated single photon counting (TCSPC) started 30 years ago in Jena/East-Germany. One decade later, first two-photon FLIM images of a human finger were taken with a lab microscope based on a tunable femtosecond Ti:sapphire laser. In 2002/2003, first clinical non-invasive two-photon FLIM studies on patients with dermatological disorders were performed using a novel multiphoton tomograph. Current in vivo two-photon FLIM studies on human subjects are based on TCSPC and focus on (i) patients with skin inflammation and skin cancer as well as brain tumors, (ii) cosmetic research on volunteers to evaluate anti-ageing cremes, (iii) pharmaceutical research on volunteers to gain information on in situ pharmacokinetics, and (iv) space medicine to study non-invasively skin modifications on astronauts during long-term space flights. Two-photon FLIM studies on volunteers and patients are performed with multiphoton FLIM tomographs using near infrared femtosecond laser technology that provide rapid non-invasive and label-free intratissue autofluorescence biopsies with picosecond temporal resolution.
Collapse
Affiliation(s)
- Karsten König
- Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, D-66123 Saarbrücken, Germany. JenLab GmbH, Johann-Hittorf-Strasse 8, D-12489 Berlin, Germany
| |
Collapse
|
5
|
Shirshin EA, Yakimov BP, Darvin ME, Omelyanenko NP, Rodionov SA, Gurfinkel YI, Lademann J, Fadeev VV, Priezzhev AV. Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:S69-S88. [PMID: 31213196 DOI: 10.1134/s0006297919140050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiphoton microscopy (MPM) is a method of molecular imaging and specifically of intravital imaging that is characterized by high spatial resolution in combination with a greater depth of penetration into the tissue. MPM is a multimodal method based on detection of nonlinear optical signals - multiphoton fluorescence and optical harmonics - and also allows imaging with the use of the parameters of fluorescence decay kinetics. This review describes and discusses photophysical processes within major reporter molecules used in MPM with endogenous contrasts and summarizes several modern experiments that illustrate the capabilities of label-free MPM for molecular imaging of biochemical processes in connective tissue and cells.
Collapse
Affiliation(s)
- E A Shirshin
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia. .,Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, 108840, Moscow, Russia
| | - B P Yakimov
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - N P Omelyanenko
- N. N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, 127299, Russia
| | - S A Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopaedics, Moscow, 127299, Russia
| | - Y I Gurfinkel
- Medical Scientific-Educational Center of Lomonosov Moscow State University, Moscow, 119192, Russia
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - V V Fadeev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - A V Priezzhev
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| |
Collapse
|
6
|
Shirshin EA, Gurfinkel YI, Priezzhev AV, Fadeev VV, Lademann J, Darvin ME. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Sci Rep 2017; 7:1171. [PMID: 28446767 PMCID: PMC5430894 DOI: 10.1038/s41598-017-01238-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
The papillary dermis of human skin is responsible for its biomechanical properties and for supply of epidermis with chemicals. Dermis is mainly composed of structural protein molecules, including collagen and elastin, and contains blood capillaries. Connective tissue diseases, as well as cardiovascular complications have manifestations on the molecular level in the papillary dermis (e.g. alteration of collagen I and III content) and in the capillary structure. In this paper we assessed the molecular structure of internal and external regions of skin capillaries using two-photon fluorescence lifetime imaging (FLIM) of endogenous compounds. It was shown that the capillaries are characterized by a fast fluorescence decay, which is originated from red blood cells and blood plasma. Using the second harmonic generation signal, FLIM segmentation was performed, which provided for spatial localization and fluorescence decay parameters distribution of collagen I and elastin in the dermal papillae. It was demonstrated that the lifetime distribution was different for the inner area of dermal papillae around the capillary loop that was suggested to be due to collagen III. Hence, we propose a generalized approach to two-photon imaging of the papillary dermis components, which extends the capabilities of this technique in skin diagnosis.
Collapse
Affiliation(s)
- Evgeny A Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| | - Yury I Gurfinkel
- Research Clinical Center of JSC "Russian Railways", Moscow, Russia
| | | | - Victor V Fadeev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
|
8
|
Majdzadeh A, Lee AMD, Wang H, Lui H, McLean DI, Crawford RI, Zloty D, Zeng H. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 31:141-8. [PMID: 25650100 DOI: 10.1111/phpp.12161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. METHODS We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. RESULTS MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. CONCLUSION This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ.
Collapse
Affiliation(s)
- Ali Majdzadeh
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yew E, Rowlands C, So PTC. Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2014; 7:1330010. [PMID: 25075226 PMCID: PMC4112132 DOI: 10.1142/s1793545813300103] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance.
Collapse
Affiliation(s)
- Elijah Yew
- Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way CREATE Tower, Singapore 138602
| | - Christopher Rowlands
- Department of Biological Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
| | - Peter T. C. So
- Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way CREATE Tower, Singapore 138602
- Department of Biological Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
- Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
- GR Harrison Spectroscopy Laboratory 77 Massachusetts Ave, Cambridge MA 02139, USA
| |
Collapse
|
10
|
Seidenari S, Arginelli F, Dunsby C, French PMW, König K, Magnoni C, Talbot C, Ponti G. Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS One 2013; 8:e70682. [PMID: 23923016 PMCID: PMC3724798 DOI: 10.1371/journal.pone.0070682] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Multiphoton laser tomography (MPT) combined with fluorescence lifetime imaging (FLIM) is a non-invasive imaging technique, based on the study of fluorescence decay times of naturally occurring fluorescent molecules, enabling a non-invasive investigation of the skin with subcellular resolution. The aim of this retrospective observational ex vivo study, was to characterize melanoma both from a morphologic and a quantitative point of view, attaining an improvement in the diagnostic accuracy with respect to dermoscopy. In the training phase, thirty parameters, comprising both cytological descriptors and architectural aspects, were identified. The training set included 6 melanomas with a mean Breslow thickness±S.D. of 0.89±0.48 mm. In the test phase, these parameters were blindly evaluated on a test data set consisting of 25 melanomas, 50 nevi and 50 basal cell carcinomas. Melanomas in the test phase comprised 8 in situ lesions and had a mean thickness±S.D. of 0.77±1.2 mm. Moreover, quantitative FLIM data were calculated for special areas of interest. Melanoma was characterized by the presence of atypical short lifetime cells and architectural disorder, in contrast to nevi presenting typical cells and a regular histoarchitecture. Sensitivity and specificity values for melanoma diagnosis were 100% and 98%, respectively, whereas dermoscopy achieved the same sensitivity, but a lower specificity (82%). Mean fluorescence lifetime values of melanocytic cells did not vary between melanomas and nevi, but significantly differed from those referring to basal cell carcinoma enabling a differential diagnosis based on quantitative data. Data from prospective preoperative trials are needed to confirm if MPT/FLIM could increase diagnostic specificity and thus reduce unnecessary surgical excisions.
Collapse
Affiliation(s)
- Stefania Seidenari
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Arginelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Christopher Dunsby
- Department of Physics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Paul M. W. French
- Department of Physics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Karsten König
- Department of Biophotonics and Lasertechnology, Saarland University, Saarbrücken, Germany
- JenLab GmbH, Jena, Germany
| | - Cristina Magnoni
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Clifford Talbot
- Department of Physics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Giovanni Ponti
- Department of Clinical and Diagnostic Medicine and Public Health, University Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|