1
|
Lee S, Baker CM, Sellens E, Stevenson MA, Roche S, Hall RN, Breed AC, Firestone SM. A systematic review of epidemiological modelling in response to lumpy skin disease outbreaks. Front Vet Sci 2024; 11:1459293. [PMID: 39376926 PMCID: PMC11456570 DOI: 10.3389/fvets.2024.1459293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Lumpy skin disease (LSD) is an infectious disease currently spreading worldwide and poses a serious global threat. However, there is limited evidence and understanding to support the use of models to inform decision-making in LSD outbreak responses. This review aimed to identify modelling approaches that can be used before and during an outbreak of LSD, examining their characteristics and priorities, and proposing a structured workflow. We conducted a systematic review and identified 60 relevant publications on LSD outbreak modelling. The review identified six categories of question to be addressed following outbreak detection (origin, entry pathway, outbreak severity, risk factors, spread, and effectiveness of control measures), and five analytical techniques used to address them (descriptive epidemiology, risk factor analysis, spatiotemporal analysis, dynamic transmission modelling, and simulation modelling). We evaluated the questions each analytical technique can address, along with their data requirements and limitations, and accordingly assigned priorities to the modelling. Based on this, we propose a structured workflow for modelling during an LSD outbreak. Additionally, we emphasise the importance of pre-outbreak preparation and continuous updating of modelling post-outbreak for effective decision-making. This study also discusses the inherent limitations and uncertainties in the identified modelling approaches. To support this workflow, high-quality data must be collected in standardised formats, and efforts should be made to reduce inherent uncertainties of the models. The suggested modelling workflow can be used as a process to support rapid response for countries facing their first LSD occurrence and can be adapted to other transboundary diseases.
Collapse
Affiliation(s)
- Simin Lee
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher M. Baker
- School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Parkville, VIC, Australia
- The Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Emily Sellens
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Mark A. Stevenson
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sharon Roche
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | | | - Andrew C. Breed
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Bianchini J, Simons X, Humblet MF, Saegerman C. Lumpy Skin Disease: A Systematic Review of Mode of Transmission, Risk of Emergence and Risk Entry Pathway. Viruses 2023; 15:1622. [PMID: 37631965 PMCID: PMC10458895 DOI: 10.3390/v15081622] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The spread of lumpy skin disease (LSD) to free countries over the last 10 years, particularly countries in Europe, Central and South East Asia, has highlighted the threat of emergence in new areas or re-emergence in countries that achieved eradication. This review aimed to identify studies on LSD epidemiology. A focus was made on hosts, modes of transmission and spread, risks of outbreaks and emergence in new areas. In order to summarize the research progress regarding the epidemiological characteristics of LSD virus over the last 40 years, the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement guidelines were followed, via two databases, i.e., PubMed (biomedical literature) and Scopus (peer-reviewed literature including scientific journals, books, and conference proceedings). A total of 86 scientific articles were considered and classified according to the type of epidemiological study, i.e., experimental versus observational. The main findings and limitations of the retrieved articles were summarized: buffaloes are the main non-cattle hosts, the main transmission mode is mechanical, i.e., via blood-sucking vectors, and stable flies are the most competent vectors. Vectors are mainly responsible for a short-distance spread, while cattle trade spread the virus over long distances. Furthermore, vaccine-recombinant strains have emerged. In conclusion, controlling animal trade and insects in animal transport trucks are the most appropriate measures to limit or prevent LSD (re)emergence.
Collapse
Affiliation(s)
- Juana Bianchini
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health, (FARAH) Centre, Liège University, 4000 Liège, Belgium;
| | - Xavier Simons
- Unit Veterinary Epidemiology, Department Epidemiology and Public Health, Sciensano, 1050 Brussels, Belgium;
| | - Marie-France Humblet
- Department of Occupational Protection and Hygiene, Unit Biosafety, Biosecurity and Environmental Licences, Liège University, 4000 Liège, Belgium;
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health, (FARAH) Centre, Liège University, 4000 Liège, Belgium;
| |
Collapse
|
3
|
Li Y, An Q, Sun Z, Gao X, Wang H. Risk Factors and Spatiotemporal Distribution of Lumpy Skin Disease Occurrence in the Asian Continent during 2012-2022: An Ecological Niche Model. Transbound Emerg Dis 2023; 2023:6207149. [PMID: 40303823 PMCID: PMC12016808 DOI: 10.1155/2023/6207149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/02/2025]
Abstract
Lumpy skin disease (LSD) is an emerging transboundary infectious disease of animals with high morbidity and low mortality rates. The infection occurs in cattle, buffalo, and some closely related wild animals, with cattle and buffalo showing higher susceptibility than other species. The primary mode of disease transmission is the mechanical dispersion of bloodsucking insects. The disease symptoms, including animal fur damage, weight loss, decline in milk production, infertility, and miscarriage, lead to huge economic losses in regions and countries with LSD outbreaks. The present study aimed to analyze the incidence data of LSD in the Asian continent from January 2012 to September 2022, identify spatiotemporal clusters and risk factors of the disease, and establish a maximum entropy ecological niche model to predict high-risk areas for disease outbreaks. The studied variables included bioclimatic factors, land type, and population density. Following the screening process, 12 variables were included in the maximum entropy model. Among them, the variable contribution rates of cattle density, land cover, isothermality, buffalo density, and maximum temperature of the warmest month were 53.8%, 10.9%, 9.2%, 8.9%, and 8%, respectively. Accounting for more than 90% of the total variable contribution rate, these five variables were considered to be the important influencing factors of LSD outbreaks. According to the results, nine spatiotemporal clusters approximately matched the high-risk areas predicted by the model. The Caucasus region of Russia; the Russian border areas of Kazakhstan, Turkey, Syria, Lebanon, Palestine, and Israel; and the western regions of Iran, India, and Southeast Asia were predicted to be high-risk areas. Thus, this study provides the spatiotemporal clusters, risk factors, and high-risk areas of LSD outbreaks in the Asian continent, which can help formulate more effective disease prevention and control policies.
Collapse
Affiliation(s)
- Yuepeng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qi An
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhuo Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiang Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Counotte MJ, Petie R, van Klink EGM, de Vos CJ. A Generic Risk Assessment Model for Animal Disease Entry through Wildlife: The Example of Highly Pathogenic Avian Influenza and African Swine Fever in The Netherlands. Transbound Emerg Dis 2023; 2023:9811141. [PMID: 40303804 PMCID: PMC12016805 DOI: 10.1155/2023/9811141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/02/2025]
Abstract
Animal diseases can enter countries or regions through the movements of infected wildlife. A generic risk model would allow to quantify the risk of entry via this introduction route for different diseases and wildlife species, despite the vast variety in both, and help policy-makers to make informed decisions. Here, we propose such a generic risk assessment model and illustrate its application by assessing the risk of entry of African swine fever (ASF) through wild boar and highly pathogenic avian influenza (HPAI) through wild birds for the Netherlands between 2014-2021. We used disease outbreak data and abstracted movement patterns to populate a stochastic risk model. We found that the entry risk of HPAI fluctuated between the years, with a peak in 2021. In that year, we estimated the number of infected birds to reach the Dutch border by wild bird migration at 273 (95% uncertainty interval: 254-290). The probability that ASF outbreaks that occurred between 2014 and 2021 reached the Dutch border through wild boar movement was very low throughout the whole period; only the upper confidence bound indicated a small entry risk. On a yearly scale, the predicted entry risk for HPAI correlated well with the number of observed outbreaks. In conclusion, we present a generic and flexible framework to assess the entry risk of disease through wildlife. The model allows rapid and transparent estimation of the entry risk for diverse diseases and wildlife species. The modular structure of the model allows for adding nuance and complexity when required or when more data becomes available.
Collapse
Affiliation(s)
- Michel J. Counotte
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Ronald Petie
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Ed G. M. van Klink
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Clazien J. de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| |
Collapse
|
5
|
de Vos CJ, Petie R, van Klink EGM, Swanenburg M. Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management. Front Vet Sci 2022; 9:963758. [PMID: 36157188 PMCID: PMC9490411 DOI: 10.3389/fvets.2022.963758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing globalization and international trade contribute to rapid expansion of animal and human diseases. Hence, preparedness is warranted to prevent outbreaks of emerging and re-emerging diseases or detect outbreaks in an early stage. We developed a rapid risk assessment tool (RRAT) to inform risk managers on the incursion risk of multiple livestock diseases, about the main sources for incursion and the change of risk over time. RRAT was built as a relational database to link data on disease outbreaks worldwide, on introduction routes and on disease-specific parameters. The tool was parameterized to assess the incursion risk of 10 livestock diseases for the Netherlands by three introduction routes: legal trade in live animals, legal trade of animal products, and animal products illegally carried by air travelers. RRAT calculates a semi-quantitative risk score for the incursion risk of each disease, the results of which allow for prioritization. Results based on the years 2016-2018 indicated that the legal introduction routes had the highest incursion risk for bovine tuberculosis, whereas the illegal route posed the highest risk for classical swine fever. The overall incursion risk via the illegal route was lower than via the legal routes. The incursion risk of African swine fever increased over the period considered, whereas the risk of equine infectious anemia decreased. The variation in the incursion risk over time illustrates the need to update the risk estimates on a regular basis. RRAT has been designed such that the risk assessment can be automatically updated when new data becomes available. For diseases with high-risk scores, model results can be analyzed in more detail to see which countries and trade flows contribute most to the risk, the results of which can be used to design risk-based surveillance. RRAT thus provides a multitude of information to evaluate the incursion risk of livestock diseases at different levels of detail. To give risk managers access to all results of RRAT, an online visualization tool was built.
Collapse
|
6
|
de Vos CJ, Hennen WHGJ, van Roermund HJW, Dhollander S, Fischer EAJ, de Koeijer AA. Assessing the introduction risk of vector-borne animal diseases for the Netherlands using MINTRISK: A Model for INTegrated RISK assessment. PLoS One 2021; 16:e0259466. [PMID: 34727138 PMCID: PMC8562800 DOI: 10.1371/journal.pone.0259466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
To evaluate and compare the risk of emerging vector-borne diseases (VBDs), a Model for INTegrated RISK assessment, MINTRISK, was developed to assess the introduction risk of VBDs for new regions in an objective, transparent and repeatable manner. MINTRISK is a web-based calculation tool, that provides semi-quantitative risk scores that can be used for prioritization purposes. Input into MINTRISK is entered by answering questions regarding entry, transmission, establishment, spread, persistence and impact of a selected VBD. Answers can be chosen from qualitative answer categories with accompanying quantitative explanation to ensure consistent answering. The quantitative information is subsequently used as input for the model calculations to estimate the risk for each individual step in the model and for the summarizing output values (rate of introduction; epidemic size; overall risk). The risk assessor can indicate his uncertainty on each answer, and this is accounted for by Monte Carlo simulation. MINTRISK was used to assess the risk of four VBDs (African horse sickness, epizootic haemorrhagic disease, Rift Valley fever, and West Nile fever) for the Netherlands with the aim to prioritise these diseases for preparedness. Results indicated that the overall risk estimate was very high for all evaluated diseases but epizootic haemorrhagic disease. Uncertainty intervals were, however, wide limiting the options for ranking of the diseases. Risk profiles of the VBDs differed. Whereas all diseases were estimated to have a very high economic impact once introduced, the estimated introduction rates differed from low for Rift Valley fever and epizootic haemorrhagic disease to moderate for African horse sickness and very high for West Nile fever. Entry of infected mosquitoes on board of aircraft was deemed the most likely route of introduction for West Nile fever into the Netherlands, followed by entry of infected migratory birds.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Wil H. G. J. Hennen
- Wageningen Economic Research, Wageningen University & Research, Den Haag, The Netherlands
| | | | | | - Egil A. J. Fischer
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Aline A. de Koeijer
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| |
Collapse
|
7
|
Tuppurainen E, Dietze K, Wolff J, Bergmann H, Beltran-Alcrudo D, Fahrion A, Lamien CE, Busch F, Sauter-Louis C, Conraths FJ, De Clercq K, Hoffmann B, Knauf S. Review: Vaccines and Vaccination against Lumpy Skin Disease. Vaccines (Basel) 2021; 9:1136. [PMID: 34696244 PMCID: PMC8539040 DOI: 10.3390/vaccines9101136] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
The geographical distribution of lumpy skin disease (LSD), an economically important cattle disease caused by a capripoxvirus, has reached an unprecedented extent. Vaccination is the only way to prevent the spread of the infection in endemic and newly affected regions. Yet, in the event of an outbreak, selection of the best vaccine is a major challenge for veterinary authorities and farmers. Decision makers need sound scientific information to support their decisions and subsequent actions. The available vaccine products vary in terms of quality, efficacy, safety, side effects, and price. The pros and cons of different types of live attenuated and inactivated vaccines, vaccination strategies, and associated risks are discussed. Seroconversion, which typically follows vaccination, places specific demands on the tools and methods used to evaluate the effectiveness of the LSD vaccination campaigns in the field. We aimed to give a comprehensive update on available vaccines and vaccination against LSD, to better prepare affected and at-risk countries to control LSD and ensure the safe trade of cattle.
Collapse
Affiliation(s)
- Eeva Tuppurainen
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Janika Wolff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (J.W.); (B.H.)
| | - Hannes Bergmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Daniel Beltran-Alcrudo
- Regional Office for Europe and Central Asia, Food and Agriculture Organization, 20 Kalman Imre utca, H-1054 Budapest, Hungary;
| | - Anna Fahrion
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Charles Euloge Lamien
- FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Friedenstrasse 1, A-2444 Seibersdorf, Austria;
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Carola Sauter-Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Franz J. Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium;
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (J.W.); (B.H.)
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| |
Collapse
|
8
|
Khanyari M, Robinson S, Morgan ER, Brown T, Singh NJ, Salemgareyev A, Zuther S, Kock R, Milner‐Gulland EJ. Building an ecologically founded disease risk prioritization framework for migratory wildlife species based on contact with livestock. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Munib Khanyari
- Department of Biological Sciences University of Bristol Bristol UK
- Interdisciplinary Centre for Conservation Sciences (ICCS) Department of Zoology University of Oxford Oxford UK
- Nature Conservation Foundation Mysore India
| | - Sarah Robinson
- Interdisciplinary Centre for Conservation Sciences (ICCS) Department of Zoology University of Oxford Oxford UK
| | - Eric R. Morgan
- Department of Biological Sciences University of Bristol Bristol UK
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Tony Brown
- School of Biological Sciences Queen's University Belfast Belfast UK
| | | | - Albert Salemgareyev
- Association for the Conservation of Biodiversity of Kazakhstan Astana Kazakhstan
| | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan Astana Kazakhstan
- Frankfurt Zoological Society Frankfurt Germany
| | | | - E. J. Milner‐Gulland
- Interdisciplinary Centre for Conservation Sciences (ICCS) Department of Zoology University of Oxford Oxford UK
| |
Collapse
|
9
|
Abstract
The EUropean FOod Risk Assessment (EU-FORA) Fellowship work programme 'Livestock Health and Food Chain Risk Assessment', funded by EFSA was proposed by the Animal and Plant Health Agency (APHA), UK. A scientist with a PhD in Food Science was selected to work within the Biomathematics and Risk Research group, under the guidance of a senior risk assessor. The programme consisted of four different modules that covered a wide range of aspects related to risk assessment (RA). The aims, activities and conclusions obtained during the year are described in this article. The learning-by-doing approach in RA allowed the fellow to discover a broad pool of methodologies, tools and applications while developing his own knowledge in RA, as well as gaining scientific network for future collaborations in the field.
Collapse
|
10
|
Taylor RA, Podgórski T, Simons RRL, Ip S, Gale P, Kelly LA, Snary EL. Predicting spread and effective control measures for African swine fever-Should we blame the boars? Transbound Emerg Dis 2020; 68:397-416. [PMID: 32564507 DOI: 10.1111/tbed.13690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/19/2020] [Accepted: 06/06/2020] [Indexed: 01/25/2023]
Abstract
An ongoing, continually spreading, outbreak of African swine fever (ASF), following its identification in Georgia in 2007, has resulted in 17 European and 12 Asian countries reporting cases by April 2020, with cases occurring in both wild boar and domestic pigs. Curtailing further spread of ASF requires understanding of the transmission pathways of the disease. ASF is self-sustaining in the wild boar population, and they have been implicated as one of the main drivers of transmission within Europe. We developed a spatially explicit model to estimate the risk of infection with ASF in wild boar and pigs due to natural movement of wild boar that is applicable across the whole of Europe. We demonstrate the model by using it to predict the probability that early cases of ASF in Poland were caused by wild boar dispersion. The risk of infection in 2015 is computed due to wild boar cases in Poland in 2014, compared against reported cases in 2015, and then the procedure is repeated for 2015-2016. We find that long- and medium-distance spread of ASF (i.e. >30 km) is unlikely to have occurred due to wild boar dispersal, due in part to the generally short distances wild boar will travel (<20 km on average). We also predict the relative success of different control strategies in 2015, if they were implemented in 2014. Results suggest that hunting of wild boar reduces the number of new cases, but a larger region is at risk of ASF compared with no control measure. Alternatively, introducing wild boar-proof fencing reduces the size of the region at risk in 2015, but not the total number of cases. Overall, our model suggests wild boar movement is only responsible for local transmission of disease; thus, other pathways are more dominant in medium- and long-distance spread of the disease.
Collapse
Affiliation(s)
- Rachel A Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| | - Tomasz Podgórski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Robin R L Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| | - Sophie Ip
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Paul Gale
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| | - Louise A Kelly
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK.,Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Emma L Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
11
|
de Vos CJ, Taylor RA, Simons RRL, Roberts H, Hultén C, de Koeijer AA, Lyytikäinen T, Napp S, Boklund A, Petie R, Sörén K, Swanenburg M, Comin A, Seppä-Lassila L, Cabral M, Snary EL. Cross-Validation of Generic Risk Assessment Tools for Animal Disease Incursion Based on a Case Study for African Swine Fever. Front Vet Sci 2020; 7:56. [PMID: 32133376 PMCID: PMC7039936 DOI: 10.3389/fvets.2020.00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Helen Roberts
- Department for Environment, Food & Rural Affairs (Defra), London, United Kingdom
| | | | - Aline A. de Koeijer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | | | - Sebastian Napp
- Centre de Recerca en Sanitat Animal (CReSA IRTA-UAB), Bellaterra, Spain
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, Frederiksberg, Denmark
| | - Ronald Petie
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Kaisa Sörén
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Manon Swanenburg
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Arianna Comin
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Maria Cabral
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
12
|
Calistri P, De Clercq K, Gubbins S, Klement E, Stegeman A, Cortiñas Abrahantes J, Marojevic D, Antoniou S, Broglia A. Lumpy skin disease epidemiological report IV: data collection and analysis. EFSA J 2020; 18:e06010. [PMID: 32874220 PMCID: PMC7448019 DOI: 10.2903/j.efsa.2020.6010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In 2019, no lumpy skin disease (LSD) outbreaks were reported in South-Eastern Europe, the mass vaccination regional campaign with homologous LSD vaccine continued for the fourth year with over 1.8 million bovines vaccinated in the region, preventing further outbreaks since 2016. LSD outbreaks were reported in Turkey, including western Turkey, in Russia and in eastern Asia affecting China, Bangladesh and India for the first time. The use of homologous vaccine should be considered in the countries still affected in order to eliminate the virus. Besides passive surveillance, which is implemented in all the countries, active surveillance for early detection based on clinical examination could be conducted ideally during April-October every 5 weeks in at-risk areas, based on possible re-emergence or re-introduction from affected neighbouring countries. Active surveillance for proving disease freedom could be based on serological testing (enzyme-linked immunosorbent assay (ELISA)) targeting 3.5% seroprevalence and conducted on a random sample of cattle herds on non-vaccinated animals. LSD re-emerged in Israel in 2019, after vaccination became voluntary. This shows that, if the virus is still circulating in the region, the reduced protection might result in re-emergence of LSD. In case of re-emergence, a contingency plan and vaccine stockpiling would be needed, in order to react quickly. From a study performed in Israel to test side effects of live-attenuated homologous LSD vaccine, milk production can be reduced during 7 days after vaccination (around 6-8 kg per cow), without a significant loss in the 30 days after vaccination. Research needs should be focused on the probability of transmission from insect to bovine, the virus inactivation rate in insects, the collection of baseline entomological data, the capacity of vector species in LSDV transmission linked to studies on their abundance and the control of Stomoxys calcitrans being the most important vector in LSD transmission.
Collapse
|
13
|
Taylor RA, Condoleo R, Simons RRL, Gale P, Kelly LA, Snary EL. The Risk of Infection by African Swine Fever Virus in European Swine Through Boar Movement and Legal Trade of Pigs and Pig Meat. Front Vet Sci 2020; 6:486. [PMID: 31998765 PMCID: PMC6962172 DOI: 10.3389/fvets.2019.00486] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is currently spreading westwards throughout Europe and eastwards into China, with cases occurring in both wild boar and domestic pigs. A generic risk assessment framework is used to determine the probability of first infection with ASF virus (ASFV) at a fine spatial scale across European Union Member States. The framework aims to assist risk managers across Europe with their ASF surveillance and intervention activities. Performing the risk assessment at a fine spatial scale allows for hot-spot surveillance, which can aid risk managers by directing surveillance or intervention resources at those areas or pathways deemed most at risk, and hence enables prioritization of limited resources. We use 2018 cases of ASF to estimate prevalence of the disease in both wild boar and pig populations and compute the risk of initial infection for 2019 at a 100 km2 cell resolution via three potential pathways: legal trade in live pigs, natural movement of wild boar, and legal trade in pig meat products. We consider the number of pigs, boar and amount of pig meat entering our area of interest, the prevalence of the disease in the origin country, the probability of exposure of susceptible pigs or boar in the area of interest to introduced infected pigs, boar, or meat from an infected pig, and the probability of transmission to susceptible animals. We provide maps across Europe indicating regions at highest risk of initial infection. Results indicate that the risk of ASF in 2019 was predominantly focused on those regions which already had numerous cases in 2018 (Poland, Lithuania, Hungary, Romania, and Latvia). The riskiest pathway for ASFV transmission to pigs was the movement of wild boar for Eastern European countries and legal trade of pigs for Western European countries. New infections are more likely to occur in wild boar rather than pigs, for both the pig meat and wild boar movement pathways. Our results provide an opportunity to focus surveillance activities and thus increase our ability to detect ASF introductions earlier, a necessary requirement if we are to successfully control the spread of this devastating disease for the pig industry.
Collapse
Affiliation(s)
- Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Roberto Condoleo
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Rome, Italy
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Paul Gale
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Louise A. Kelly
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
14
|
Cabral M, Taylor R, de Vos CJ. Risk assessment of exotic disease incursion and spread. EFSA J 2019; 17:e170916. [PMID: 32626474 PMCID: PMC7015500 DOI: 10.2903/j.efsa.2019.e170916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This Technical Report describes the activities developed in the scope of the EU‐FORA Fellowship, within the work programme of risk assessment (RA) of exotic disease incursion and spread, developed at Wageningen Bioveterinary Research (WBVR). The programme focused on the work carried out in the Generic risk assessment for introduction of animal diseases (G‐RAID) project, which brings together a number of different generic RA tools from multiple European partners. The aim of the fellowship was to gain understanding of veterinary import risk assessment by using different RA tools and to learn how different algorithms can be used to calculate disease incursion risks. G‐RAID's tools cover a wide range of RA methodologies; from purely qualitative, to semi‐quantitative and fully stochastic quantitative methods, which allowed the fellow to understand a variety of algorithms used to produce the final risk estimate. The fellowship programme provided the fellow with the chance to learn in detail about how generic RAs are performed across Europe, understanding how to deal with the uncertainty and variability involved in RAs and the potential problems of data availability and reliability. The fellow made an inventory of publicly available databases on disease occurrence and international trade that could be used for import RA and assessed their quality and usefulness for the different generic RA tools. The programme also provided the fellow the opportunity to perform several import risk assessments using the RA tools of G‐RAID. She completed a RA on African swine fever using the MINTRISK model developed by WBVR. Furthermore, she assessed the risk of foot and mouth disease introduction using the Rapid Risk Assessment Tool (RRAT) model developed by WBVR and the COMPARE model developed by the Animal and Plant Health Agency (APHA). To this end, the fellow completed a short‐term visit to APHA, enabling her to have additional training in quantitative RA and to expand her professional network in this area.
Collapse
Affiliation(s)
| | - M Cabral
- Animal and Plant Health Agency United Kingdom
| | - R Taylor
- Animal and Plant Health Agency United Kingdom
| | - C J de Vos
- Animal and Plant Health Agency United Kingdom
| |
Collapse
|