1
|
Niu Y, McKee CD. Bat Viral Shedding: A Review of Seasonal Patterns and Risk Factors. Vector Borne Zoonotic Dis 2025; 25:229-239. [PMID: 39836021 DOI: 10.1089/vbz.2024.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background: Bats act as reservoirs for a variety of zoonotic viruses, sometimes leading to spillover into humans and potential risks of global transmission. Viral shedding from bats is an essential prerequisite to bat-to-human viral transmission and understanding the timing and intensity of viral shedding from bats is critical to mitigate spillover risks. However, there are limited investigations on bats' seasonal viral shedding patterns and their related risk factors. We conducted a comprehensive review of longitudinal studies on bat viruses with spillover potential to synthesize patterns of seasonal viral shedding and explore associated risk factors. Methods: We extracted data from 60 reviewed articles and obtained 1085 longitudinal sampling events. We analyzed viral shedding events using entropy values to quantitatively assess whether they occur in a consistent, pulsed pattern in a given season. Results: We found that clear seasonal shedding patterns were common in bats. Eight out of seventeen species-level analyses presented clear seasonal patterns. Viral shedding pulses often coincide with bats' life cycles, especially in weaning and parturition seasons. Juvenile bats with waning maternal antibodies, pregnant bats undergoing immunity changes, and hibernation periods with decreased immune responses could be potential risk factors influencing seasonal shedding patterns. Conclusion: Based on our findings, we recommend future longitudinal studies on bat viruses that combine direct viral testing and serological testing, prioritize longitudinal research following young bats throughout their developmental stages, and broaden the geographical range of longitudinal studies on bat viruses based on current surveillance reports. Our review identified critical periods with heightened viral shedding for some viruses in bat species, which would help promote efforts to minimize spillovers and prevent outbreaks.
Collapse
Affiliation(s)
- Yannan Niu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clifton D McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Gonzalez V, Hurtado-Monzón AM, O'Krafka S, Mühlberger E, Letko M, Frank HK, Laing ED, Phelps KL, Becker DJ, Munster VJ, Falzarano D, Schountz T, Seifert SN, Banerjee A. Studying bats using a One Health lens: bridging the gap between bat virology and disease ecology. J Virol 2024; 98:e0145324. [PMID: 39499009 DOI: 10.1128/jvi.01453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arianna M Hurtado-Monzón
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sabrina O'Krafka
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Boston University, Boston, Massachusetts, USA
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Hannah K Frank
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Lukina-Gronskaya AV, Chudinov IK, Korneenko EV, Mashkova SD, Semashko TA, Sinkova MA, Penkin LN, Litvinova EM, Feoktistova NY, Speranskaya AS. Novel coronaviruses and mammarenaviruses of hedgehogs from Russia including the comparison of viral communities of hibernating and active specimens. Front Vet Sci 2024; 11:1486635. [PMID: 39736935 PMCID: PMC11683907 DOI: 10.3389/fvets.2024.1486635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Small mammals, especially rodents and bats, are known reservoirs of zoonotic viruses, but little is known about the viromes of insectivorous species including hedgehogs (order Eulipotyphla), which often live near human settlements and come into contact with humans. Methods We used high-throughput sequencing and metaviromic analysis to describe the viromes of 21 hedgehogs (Erinaceus sp.) sampled from summer 2022 to spring 2023. We captured 14 active animals from the wild (seven in European Russia and the other seven in Central Siberia). The remaining 7 animals were hibernating in captivity (captured in European Russia before the experiment). Results and discussion The diversity of identified viral taxa as well as the total number of reads classified as viral was high in all active animals (up to eight different viral families per animal), but significantly lower in hibernating animals (zero or no more than three different viral families per animal). The present study reports, for the first time, betacoronaviruses and mammasrenaviruses in hedgehogs from Russia. Erinaceus coronaviruses (EriCoVs) were found in 4 of 7 active animals captured in the wild, in European Russia, making it is the easiest finding of EriCoVs in Europe. One animal was found to carry of two different EriCoVs. Both strains belong to the same phylogenetic clade as other coronaviruses from European hedgehogs. Pairwise comparative analysis suggested that one of these two strains arose by recombination with an unknown coronavirus, since all of identified SNPs (n = 288) were found only in the local genome region (the part of ORF1b and S gene). The novel mammarenaviruses (EriAreVs) were detected in 2 out of 7 active and in 2 out of 7 hibernating animals from the European Russia. Several complete L and S segments of EriAreVs were assembled. All identified EriAreVs belonged to the same clade as the recently described MEMV virus from Hungarian hedgehogs. As the hibernating hedgehogs were positive for EriAreVs when kept in controlled conditions without contact with each other, we suggest the possibility of persistent arenavirus infection in hedgehogs, but further experiments are needed to prove this.
Collapse
Affiliation(s)
- A. V. Lukina-Gronskaya
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - I. K. Chudinov
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - E. V. Korneenko
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
- Department of Epidemiology, Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Saint Petersburg, Russia
| | - S. D. Mashkova
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - T. A. Semashko
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - M. A. Sinkova
- Zoological Museum of Moscow State University Named After M.V. Lomonosov, Moscow, Russia
| | - L. N. Penkin
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - E. M. Litvinova
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
| | - N. Yu Feoktistova
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - A. S. Speranskaya
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| |
Collapse
|
4
|
Perdrizet UG, Hill JE, Sobchishin L, Singh B, Fernando C, Bollinger TK, Misra V. Tissue and cellular tropism of Eptesicus fuscus gammaherpesvirus in big brown bats, potential role of pulmonary intravascular macrophages. Vet Pathol 2024; 61:550-561. [PMID: 38619093 PMCID: PMC11264566 DOI: 10.1177/03009858241244849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural Eptesicus fuscus gammaherpesvirus (EfHV) infections in their host, the big brown bat (Eptesicus fuscus), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats. Tissues from 59 of these cases, including 17 from bats with detectable EfHV genomes, were analyzed. An EfHV isolate was obtained from one of the cases, and electron micrographs and whole genome sequencing were used to confirm that this was a unique isolate of EfHV. Although several bats exhibited various lesions, we did not establish EfHV infection as a cause. Latent infection, defined as RNAScope probe binding to viral latency-associated nuclear antigen in the absence of viral envelope glycoprotein probe binding, was found within cells of the lymphoid tissues. These cells also had colocalization of the B-cell probe targeting CD20 mRNA. Probe binding for both latency-associated nuclear antigen and a viral glycoprotein was observed in individual cells dispersed throughout the alveolar capillaries of the lung, which had characteristics of pulmonary intravascular macrophages. Cells with a similar distribution in bat lungs expressed major histocompatibility class II, a marker for antigen presenting cells, and the existence of pulmonary intravascular macrophages in bats was confirmed with transmission electron microscopy. The importance of this cell type in γHVs infections warrants further investigation.
Collapse
Affiliation(s)
| | | | | | - Baljit Singh
- University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Vikram Misra
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Cuyutupa VR, Moser D, Diedrich V, Cheng Y, Billaud JN, Haugg E, Singer D, Bereiter-Hahn J, Herwig A, Choukér A. Blood transcriptomics mirror regulatory mechanisms during hibernation-a comparative analysis of the Djungarian hamster with other mammalian species. Pflugers Arch 2023; 475:1149-1160. [PMID: 37542567 PMCID: PMC10499953 DOI: 10.1007/s00424-023-02842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
Hibernation enables many species of the mammalian kingdom to overcome periods of harsh environmental conditions. During this physically inactive state metabolic rate and body temperature are drastically downregulated, thereby reducing energy requirements (torpor) also over shorter time periods. Since blood cells reflect the organism´s current condition, it was suggested that transcriptomic alterations in blood cells mirror the torpor-associated physiological state. Transcriptomics on blood cells of torpid and non-torpid Djungarian hamsters and QIAGEN Ingenuity Pathway Analysis (IPA) revealed key target molecules (TMIPA), which were subjected to a comparative literature analysis on transcriptomic alterations during torpor/hibernation in other mammals. Gene expression similarities were identified in 148 TMIPA during torpor nadir among various organs and phylogenetically different mammalian species. Based on TMIPA, IPA network analyses corresponded with described inhibitions of basic cellular mechanisms and immune system-associated processes in torpid mammals. Moreover, protection against damage to the heart, kidney, and liver was deduced from this gene expression pattern in blood cells. This study shows that blood cell transcriptomics can reflect the general physiological state during torpor nadir. Furthermore, the understanding of molecular processes for torpor initiation and organ preservation may have beneficial implications for humans in extremely challenging environments, such as in medical intensive care units and in space.
Collapse
Affiliation(s)
- Valeria Rojas Cuyutupa
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Victoria Diedrich
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yiming Cheng
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz, Munich, Neuherberg, Germany
| | | | - Elena Haugg
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dominique Singer
- Division of Neonatology and Pediatric Critical Care Medicine, University Medical Center Eppendorf, Hamburg, Germany
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Alexander Choukér
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Marchioninistr. 15, Munich, 81377, Germany.
| |
Collapse
|
6
|
Sullivan J, Huth L, Meers J, McMichael L. Presence of Multiple Herpesvirus Variants in Australian Flying Foxes (Pteropus spp.). J Wildl Dis 2023; 59:453-459. [PMID: 37270294 DOI: 10.7589/jwd-d-22-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/27/2023] [Indexed: 06/05/2023]
Abstract
Herpesviruses have been detected in bat species from several countries, with a limited number of studies examining herpesviruses in Pteropus spp. (flying foxes) and no investigation of herpesviruses in Australian flying foxes. We examined the presence and prevalence of herpesviruses in the four mainland Australian flying fox species. A nested PCR targeting highly conserved amino acid motifs in the DNA polymerase (DPOL) gene of herpesviruses was used to analyze 564 samples collected from 514 individual Pteropus scapulatus, Pteropus poliocephalus, Pteropus alecto, and Pteropus conspicillatus. The prevalence of herpesvirus DNA in blood, urine, oral, and fecal swabs from the four species was 17% in P. scapulatus, 11% in P. poliocephalus, 10% in P. alecto, and 9% in P. conspicillatus (31% in P. conspicillatus spleen tissue). Five putative novel herpesviruses were detected. Following PCR amplicon sequence analysis, four of the herpesviruses grouped phylogenetically with the gammaherpesviruses, with nucleotide identities between 79% and 90% to gammaherpesviruses from Asian megabats. A betaherpesvirus was detected in P. scapulatus with 99% nucleotide identity to the partial DPOL gene sequence of an Indonesian fruit bat betaherpesvirus. This study lays the foundation for future epidemiology research of herpesviruses in Australian Pteropus spp. and adds to the discussion of hypotheses surrounding the evolutionary epidemiology of bat-borne viruses on a global scale.
Collapse
Affiliation(s)
- Jennifer Sullivan
- University of Queensland, School of Veterinary Science, Veterinary Science Building, Gatton Campus, 5391 Warrego Hwy, Gatton 4343, Queensland, Australia
| | - Lauren Huth
- University of Southern Queensland, Institute for Life Sciences and the Environment, Building P22, Toowoomba Campus, 487-535 West St, Darling Heights 4350, Queensland, Australia
| | - Joanne Meers
- University of Queensland, School of Veterinary Science, Veterinary Science Building, Gatton Campus, 5391 Warrego Hwy, Gatton 4343, Queensland, Australia
| | - Lee McMichael
- University of Queensland, School of Veterinary Science, Veterinary Science Building, Gatton Campus, 5391 Warrego Hwy, Gatton 4343, Queensland, Australia
| |
Collapse
|
7
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
8
|
Warmuth VM, Metzler D, Zamora-Gutierrez V. Human disturbance increases coronavirus prevalence in bats. SCIENCE ADVANCES 2023; 9:eadd0688. [PMID: 37000877 PMCID: PMC10065436 DOI: 10.1126/sciadv.add0688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human land modification is a known driver of animal-to-human transmission of infectious agents (zoonotic spillover). Infection prevalence in the reservoir is a key predictor of spillover, but landscape-level associations between the intensity of land modification and infection rates in wildlife remain largely untested. Bat-borne coronaviruses have caused three major disease outbreaks in humans: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19). We statistically link high-resolution land modification data with bat coronavirus surveillance records and show that coronavirus prevalence significantly increases with the intensity of human impact across all climates and levels of background biodiversity. The most significant contributors to the overall human impact are agriculture, deforestation, and mining. Regions of high predicted bat coronavirus prevalence coincide with global disease hotspots, suggesting that infection prevalence in wildlife may be an important factor underlying links between human land modification and zoonotic disease emergence.
Collapse
Affiliation(s)
- Vera M. Warmuth
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Veronica Zamora-Gutierrez
- CONACYT - Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, México
| |
Collapse
|
9
|
Ranjan R. Mitigating vector-borne pathogen spread risks through promoting Gmelina arborea-based afforestation and agroforestry on private farms. JOURNAL OF CLEANER PRODUCTION 2021; 315:128215. [PMID: 36569227 PMCID: PMC9759379 DOI: 10.1016/j.jclepro.2021.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 06/17/2023]
Abstract
Bat-borne pathogens such as Nipah virus, SARS-CoV2, and Ebola have been causing significant losses to the global economy and human lives. In this paper, the role of afforestation and agroforestry in mitigating risk of bat-borne disease transmission to humans is explored using an epidemiological-agroforestry model of land use decision on private farms. Farmers owning land in fragmented forest areas are financially incentivized to grow Gmelina arborea-based forests or intermix them with agricultural crops. This reduces forest fragmentation through creating connectivity between forest patches. While agroforestry may increase the chances of contact between bats and humans, a reduction in forest fragmentation improves the carrying capacity of bats and reduces their risk of migration and roosting near human dwellings. Results indicate that afforestation on private lands or promoting agroforestry can help reduce the risk of virus transmission to humans. A small sum paid under a payment for ecosystem services (PES) scheme would be sufficient to incentivize farmers to convert their farmlands into Gmelina arborea-based agroforestry or forests. In absence of substantial PES incentives, private landowners may delay land conversion when financial benefits generated through agroforestry timber sales carry higher weight in their optimization decisions. Whereas the socially optimal land use option would be to immediately convert farmland in affected areas to agroforestry or forests. Therefore, from a policy perspective, promoting PES-based forestry and agroforestry in fragmented bat habitats can help prevent spread of deadly viruses in the future.
Collapse
Affiliation(s)
- Ram Ranjan
- Department of Economics, School of Humanities and Social Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Becker DJ, Singh D, Pan Q, Montoure JD, Talbott KM, Wanamaker SM, Ketterson ED. Artificial light at night amplifies seasonal relapse of haemosporidian parasites in a widespread songbird. Proc Biol Sci 2020; 287:20201831. [PMID: 32962545 PMCID: PMC7542808 DOI: 10.1098/rspb.2020.1831] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Urban habitats can shape interactions between hosts and parasites by altering not only exposure rates but also within-host processes. Artificial light at night (ALAN) is common in urban environments, and chronic exposure can impair host immunity in ways that may increase infection. However, studies of causal links between this stressor, immunity, and infection dynamics are rare, particularly in migratory animals. Here, we experimentally tested how ALAN affects cellular immunity and haemosporidian parasite intensity across the annual cycle of migrant and resident subspecies of the dark-eyed junco (Junco hyemalis). We monitored an experimental group exposed to light at night and a control group under natural light/dark cycles as they passed through short days simulating early spring to longer days simulating the breeding season, followed by autumn migration. Using generalized additive mixed models, we show that ALAN increased inflammation, and leucocyte counts were greatest in early spring and autumn. At the start of the experiment, few birds had active infections based on microscopy, but PCR revealed many birds had chronic infections. ALAN increased parasitaemia across the annual cycle, with strong peaks in spring and autumn that were largely absent in control birds. As birds were kept in indoor aviaries to prevent vector exposure, this increased parasitaemia indicates relapse of chronic infection during costly life-history stages (i.e. reproduction). Although the immunological and parasitological time series were in phase for control birds, cross-correlation analyses also revealed ALAN desynchronized leucocyte profiles and parasitaemia, which could suggest a general exaggerated inflammatory response. Our study shows how a common anthropogenic influence can shape within-host processes to affect infection dynamics.
Collapse
Affiliation(s)
| | - Devraj Singh
- Department of Biology, Indiana University, Bloomington, IN, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| | - Qiuyun Pan
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | - Sarah M. Wanamaker
- Department of Biology, Indiana University, Bloomington, IN, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| | - Ellen D. Ketterson
- Department of Biology, Indiana University, Bloomington, IN, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
11
|
Identification and Prevalence of Phascolarctid Gammaherpesvirus Types 1 and 2 in South Australian Koala Populations. Viruses 2020; 12:v12090948. [PMID: 32867109 PMCID: PMC7552032 DOI: 10.3390/v12090948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 01/01/2023] Open
Abstract
To determine Phascolarctid gammaherpesviruses (PhaHV) infection in South Australian koala populations, 80 oropharyngeal swabs from wild-caught and 87 oropharyngeal spleen samples and swabs from euthanased koalas were tested using two specific PCR assays developed to detect PhaHV-1 and PhaHV-2. In wild-caught koalas, active shedding of PhaHV was determined by positive oropharyngeal samples in 72.5% (58/80) of animals, of which 44.8% (26/58) had PhaHV-1, 20.7% (12/58) PhaHV-2 and 34.5% (20/58) both viral subtypes. In the euthanased koalas, systemic infection was determined by positive PCR in spleen samples and found in 72.4% (63/87) of koalas. Active shedding was determined by positive oropharyngeal results and found in 54.0% (47/87) of koalas. Koalas infected and actively shedding PhaHV-1 alone, PhaHV-2 alone or shedding both viral subtypes were 48.9% (23/47), 14.9% (7/47) and 36.2% (17/47), respectively. Only 45.9% (40/87) were not actively shedding, of which 40.0% (16/40) of these had systemic infections. Both wild-caught and euthanased koalas actively shedding PhaHV-2 were significantly more likely to be actively shedding both viral subtypes. Active shedding of PhaHV-2 had a significant negative correlation with BCS in the euthanased cohort, and active shedding of PhaHV-1 had a significant positive relationship with age in both wild-caught and euthanased cohorts.
Collapse
|
12
|
Markotter W, Coertse J, De Vries L, Geldenhuys M, Mortlock M. Bat-borne viruses in Africa: a critical review. J Zool (1987) 2020; 311:77-98. [PMID: 32427175 PMCID: PMC7228346 DOI: 10.1111/jzo.12769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
In Africa, bat-borne zoonoses emerged in the past few decades resulting in large outbreaks or just sporadic spillovers. In addition, hundreds of more viruses are described without any information on zoonotic potential. We discuss important characteristics of bats including bat biology, evolution, distribution and ecology that not only make them unique among most mammals but also contribute to their potential as viral reservoirs. The detection of a virus in bats does not imply that spillover will occur and several biological, ecological and anthropogenic factors play a role in such an event. We summarize and critically analyse the current knowledge on African bats as reservoirs for corona-, filo-, paramyxo- and lyssaviruses. We highlight that important information on epidemiology, bat biology and ecology is often not available to make informed decisions on zoonotic spillover potential. Even if knowledge gaps exist, it is still important to recognize the role of bats in zoonotic disease outbreaks and implement mitigation strategies to prevent exposure to infectious agents including working safely with bats. Equally important is the crucial role of bats in various ecosystem services. This necessitates a multidisciplinary One Health approach to close knowledge gaps and ensure the development of responsible mitigation strategies to not only minimize risk of infection but also ensure conservation of the species.
Collapse
Affiliation(s)
- W. Markotter
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - J. Coertse
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - L. De Vries
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - M. Geldenhuys
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - M. Mortlock
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
13
|
Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses 2019; 11:v11020192. [PMID: 30813403 PMCID: PMC6410205 DOI: 10.3390/v11020192] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bats harbor a myriad of viruses and some of these viruses may have spilled over to other species including humans. Spillover events are rare and several factors must align to create the “perfect storm” that would ultimately lead to a spillover. One of these factors is the increased shedding of virus by bats. Several studies have indicated that bats have unique defense mechanisms that allow them to be persistently or latently infected with viruses. Factors leading to an increase in the viral load of persistently infected bats would facilitate shedding of virus. This article reviews the unique nature of bat immune defenses that regulate virus replication and the various molecular mechanisms that play a role in altering the balanced bat–virus relationship.
Collapse
|