1
|
Chen Y, Gao J, Hua R, Zhang G. Pseudorabies virus as a zoonosis: scientific and public health implications. Virus Genes 2025; 61:9-25. [PMID: 39692808 DOI: 10.1007/s11262-024-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/26/2024] [Indexed: 12/19/2024]
Abstract
Pseudorabies virus (PRV) is a herpes virus, also known as Aujeszky's disease virus (ADV), which can cause a highly infectious disease pseudorabies (PR) in a variety of mammals. In the past, it has been debated whether PRV can infect humans, but more and more cases of PRV infection have been reported since 2017. The illness has claimed many victims and left survivors with serious sequelae. This indicates that humans may ignore the zoonotic ability of PRV. This review aims to summarize the pathology and pathogenesis of PRV and speculate on how it infects humans. This paper provides a comprehensive overview of the progression of PRV, including its virology characteristics, genomic organization, and genetic evolution. It also synthesises the existing literature on PRV infection in humans, and analyses the factors contributing to PRV zoonosis. Finally, the pathogenesis of PRV-infected pigs and other mammals was summarized, and the pathogenesis of PRV-infected humans was speculated.
Collapse
Affiliation(s)
- Yumei Chen
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Jie Gao
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Rongqian Hua
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China.
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Duan SH, Li ZM, Yu XJ, Li D. Alphaherpesvirus in Pets and Livestock. Microorganisms 2025; 13:82. [PMID: 39858850 PMCID: PMC11767655 DOI: 10.3390/microorganisms13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Herpesviruses are a group of DNA viruses capable of infecting multiple mammalian species, including humans. This review primarily summarizes four common alphaherpesviruses found in pets and livestock (feline, swine, canine, and bovine) in aspects such as epidemiology, immune evasion, and latency and reactivation. Despite the fact that they primarily infect specific hosts, these viruses have the potential for cross-species transmission due to genetic mutations and/or recombination events. During infection, herpesviruses not only stimulate innate immune responses in host cells but also interfere with signaling pathways through specific proteins to achieve immune evasion. These viruses can remain latent within the host for extended periods and reactivate under certain conditions to trigger disease recurrence. They not only affect the health of animals and cause economic losses but may also pose a potential threat to humans under certain circumstances. This review deepens our understanding of the biological characteristics of these animal alphaherpesviruses and provides an important scientific basis for the prevention and control of related diseases.
Collapse
Affiliation(s)
- Shu-Hui Duan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Dan Li
- Hubei Provincial Center for Disease Control and Prevention, Institute for Infectious Disease Prevention and Control, Wuhan 430079, China
| |
Collapse
|
3
|
Ma N, Sun Y, Ding C, Li Y, Yu L, Chen L. pUS6 in pseudorabies virus participates in the process of inhibiting antigen presentation by inhibiting the assembly of peptide loading complex. BMC Vet Res 2024; 20:454. [PMID: 39379944 PMCID: PMC11463114 DOI: 10.1186/s12917-024-04294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Pseudorabies virus (PRV) can establish lifelong latent infection in peripheral nervous ganglion, and persistent infections in peripheral blood lymphocytes. Establishing an infection in the lymphocytes does not only enable the PRV to escape host immune surveillance but pass through the placental barrier, leading to fetal death and abortion. Due to the pathogenicity of the PRV, it poses a huge challenge in its prevention and control. The PRV escapes host immunity through downregulation of swine leukocyte antigen class I (SLA I) molecules on infected cells. However, data on the molecular mechanisms of the SLA I suppression remains scant. Here, in order to verify the effect of candidate proteins PRV pUL44 and pUS6 on PRV immune escape related molecules SLA I and peptide loading complex (PLC), we detected the expression of SLA I and PLC components after expressing PRV pUL44 and pUS6. The effects of pUS6 and pUL44 on SLA I and PLC were analyzed by qRT-PCR and Western blot at mRNA and protein level, respectively. Cells expressing pUS6 or pUL44 genes showed a significantly suppressed expression of surface and total SLA I molecules. In addition, unlike UL44, the US6 gene was shown to downregulate the transporter associated with antigen processing 1 (TAP1), TAP2 and Tapasin molecules. The results show that PRV pUS6 may participate in virus immune escape by directly regulating the SLA I, TAP dimer and Tapasin molecules, thus blocking the transportation of TAP-bound peptides to the ER to bind SLA I molecules. We provide a theoretical basis on the mechanism of TAP mediated immune escape by the PRV.
Collapse
Affiliation(s)
- Ningning Ma
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Yawei Sun
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Chenmeng Ding
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China
| | - Linyang Yu
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
| |
Collapse
|
4
|
Zheng J, Fu M, Yin Z, Dou Z, Lin J, Chang G, Yang Q. Immunosuppression of the Nasal Cavity by a Novel Pathogenic Pseudorabies Virus Isolation from Cattle in China. Transbound Emerg Dis 2024; 2024:9652297. [PMID: 40303094 PMCID: PMC12017080 DOI: 10.1155/2024/9652297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 05/02/2025]
Abstract
The respiratory mucosa serves as a primary entry point for numerous pathogenic microbes, and the respiratory mucosa secretes type I and III interferons (IFNs), the first generation of antiviral cytokines, in response to viral infection. The pseudorabies virus (PRV) causes serious illnesses in many domestic and wild animal species, particularly in pigs and cattle. However, more information is needed about the immunosuppressive properties and evolutionary history of emerging PRV field strains in China's respiratory system. The PRV field strain JS2022, which was obtained from a cow farm for this investigation, is a spontaneous recombination of early PRV variant strains in the Jiangsu region and is similar to the PRV variations recovered in China in terms of its entire genome sequence. According to sequence analysis, JS2022 has a spontaneous deletion of 1,212 bp in the gE gene, 502 bp in the gI gene, and 192 bp in the glycoprotein (g) C gene. Pathogenicity analysis revealed that intranasal JS2022 causes severe neurological symptoms in calves, but this effect is different from that of ZJ01. In addition, a considerable number of viral antigens in the nasal mucosa were detected by immunohistochemical staining. Therefore, we constructed a bovine nasal mucosal explant model that maintained good cell morphology and activity even after 5 days. In bovine nasal mucosal explants, JS2022 and ZJ01 can cause infection, and the viral load increases dramatically over time. Quantitative research revealed that 24 hr after infection, JS2022 dramatically reduced the expression of downstream interferon-stimulated genes and the innate immune factors IFN-β and IFN-λ3 and bovine nasal mucosal explants. Overall, our results highlight the significance of PRV surveillance in cattle and offer a resource for learning more about the clinical traits and development of PRV.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mei Fu
- MOE Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhiyi Yin
- Ministry of Education Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhi Dou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food SafetyCollege of Veterinary MedicineNanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
5
|
Pan Y, Yao X, Yang TN, Li JL, Shi DF. The VP1/2 Protein of a New Recombinant PRV Strain Promotes the Infectivity and Pathogenicity of PRV in Northeastern China. Transbound Emerg Dis 2024; 2024:1575103. [PMID: 40303024 PMCID: PMC12020405 DOI: 10.1155/2024/1575103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 05/02/2025]
Abstract
Pseudorabies virus (PRV) is an acute infectious disease characterized by neurological and respiratory symptoms. In order to have a better understanding of the current prevalence of PRV in northeastern China, a strain of PRV was isolated by us. Then, protein structure analysis and pathogenicity testing of the virus were performed to give insight into the characterization of the isolated PRV strains. In this study, the PRV strain named CH/HLJPRVJ/2023 was isolated and identified. Genome-wide phylogenetic analysis shows CH/HLJPRVJ/2023 and HeN1 have higher homology. The CH/HLJPRVJ/2023 strain had the highest homology with HeN1 strain (97.3%) and the lowest homology with Bartha-K61 (89.2%). Recombinant evolution analysis shows CH/HLJPRVJ/2023 shows many variants in OBP, AN, UL21, UL17, VP11/12, and VP1/2 fragments, which predict its unique genetically. VP1/2, an effector protein of capsid transport and neuroinvasion, has mutations and deletions in its amino acids, which cause changes in the protein conformation of CH/HLJPRVJ/2023. Besides the typical neurologic and respiratory lesions, infection with highly pathogenic CH/HLJPRVJ/2023 can lead to damage to the colonic villi and colonic barrier in piglets. This study will provide a basis for knowledge about the prevalence, genetic evolution, and vaccine optimization of endemic PRV strains in northeastern China.
Collapse
Affiliation(s)
- Yan Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dong-Fang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Huang X, Qin S, Wang X, Xu L, Zhao S, Ren T, Ouyang K, Chen Y, Wei Z, Qin Y, Huang W. Molecular epidemiological and genetic characterization of pseudorabies virus in Guangxi, China. Arch Virol 2023; 168:285. [PMID: 37938380 DOI: 10.1007/s00705-023-05907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
Pseudorabies virus (PRV) is an important pathogen that can cause harm to the pig population. Since 2011, there have been a number of large-scale outbreaks of pseudorabies on Chinese farms where animals had been vaccinated with the Bartha-K61 vaccine. In order to understand the epidemiological trend and genetic variations of PRV in Guangxi province, China, 819 tissue samples were collected from swine farms where PRV infection was suspected from 2013 to 2019, and these were tested for infectious wild strains of PRV. The results showed a positive rate of PRV in Guangxi province of 28.21% (231/819). Thirty-six wild-type PRV strains were successfully isolated from PRV-positive tissue samples, and a genetic evolutionary analysis was performed based on the gB, gC, gD, gE, and TK genes. Thirty of the PRV strains were found to be closely related to the Chinese variant strains HeN1-China-2012 and HLJ8-China-2013. In addition, five PRV strains were genetically related to Chinese classical strains, and one isolate was a recombinant of the PRV variant and the vaccine strain Bartha-K61. Amino acid sequence analysis showed that all 36 PRV strains had characteristic variant sites in the amino acid sequences of the gB, gC, gD, and gE proteins. Pathogenicity analysis showed that, compared to classical PRV strains, the PRV variant strains were more pathogenic in mice and had a lower LD50. Taken together, our results show that wild-type PRV infections are common on pig farms in Guangxi province of China and that the dominant prevalent strains were those of the PRV variants. The PRV variant strains also had increased pathogenicity in mice. Our data will provide a useful reference for understanding the prevalence and genetic evolution of PRV in China.
Collapse
Affiliation(s)
- Xiangmei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Shuying Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xuying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lishi Xu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Shuo Zhao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| |
Collapse
|
7
|
Qin Y, Qin S, Huang X, Xu L, Ouyang K, Chen Y, Wei Z, Huang W. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China. Vet Microbiol 2023; 280:109703. [PMID: 36842367 DOI: 10.1016/j.vetmic.2023.109703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years due to outbreaks of emergent pseudorabies. However, there is limited information about the evolution and pathogenicity of emergent PRV field strains in China. In this study, two PRV field strains were isolated from an intensive pig farm with suspected PRV infection. These were named the GXLB-2015 and GXGG-2016 strains and their growth characteristics together with their genome sequences and pathogenicity were determined. Nucleotide homology and phylogenetic analysis revealed the GXLB-2015 stain was relatively close to the foreign PRV isolated strains with respect to the whole genome sequence. However, it formed an independent branch between the foreign PRV isolates and the previous PRV variants isolated in China. Further recombination and genetic evolution analysis showed that the GXLB-2015 strain was a natural recombinant between the Bartha strain and PRV variants. The GXGG-2016 strain was highly homologous with the Chinese classical strains, but it has a natural deletion of 69 aa in the thymidine kinase (TK) gene. Pathogenicity analysis showed that, the GXLB-2015 strain had the strongest pathogenicity to mice with an LD50 of 103.5, while the GXGG-2016 strain with the TK gene deletion was not pathogenic to mice. Taken together, our data provide direct evidence for the genomic recombination and natural TK gene deletion of PRVs, which may provide a reference for a better understanding of PRV evolution in China and contribute to the clinical control of PRV infection in pig farms.
Collapse
Affiliation(s)
- Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Shuying Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xiangmei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lishi Xu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| |
Collapse
|
8
|
Chen H, Fan J, Sun X, Xie R, Song W, Zhao Y, Yang T, Cao Y, Yu S, Wei C, Hua L, Wang X, Chen H, Peng Z, Cheng G, Wu B. Characterization of Pseudorabies Virus Associated with Severe Respiratory and Neuronal Signs in Old Pigs. Transbound Emerg Dis 2023; 2023:8855739. [PMID: 40303768 PMCID: PMC12017139 DOI: 10.1155/2023/8855739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 01/05/2025]
Abstract
Pseudorabies virus (PRV) represents a leading threat to the global pig industry. Generally, pigs exhibit a pronounced age resistance against PRV, and the virus generally does not cause severe clinical signs and even death in old pigs. However, we characterized two PRV strains (HeN21 and HuB20) associated with severe respiratory and neuronal signs in old pigs. Among these two strains, HeN21 was isolated from the tonsil of a 24-week-old pig that died from severe neuronal and respiratory signs in a PRV-outbreak farm where a commercial PRV attenuated vaccine developed based on a PRV variant was used; while, HuB20 was isolated from the lung and lymph node of a 20-week-old with symptoms in another farm where Bartha-K61 vaccine was used. In vitro evaluations in different cell models demonstrated that HeN21 and HuB20 led to similar cytotoxic effects to those caused by PRV variants on PK-15, Vero, and SK-N-SH cells after 30 hours of inoculation. However, HeN21 possessed a higher titer than the other PRV variants from the first to the fifth passage on PK-15 cells and induced plaques with larger size. In vivo assessments in mouse and fattening pig models showed that inoculations of HeN21 and HuB20 caused higher morbidity and mortality and severe pathological damages in tested animals. In particular, challenge of HeN21 led to severe respiratory and neuronal signs in 90-day-old pigs. These two strains displayed higher virus loads on the main organs of challenged mice and pigs. Phylogenetic analysis revealed that HeN21 and HuB20 belonged to genotype II. In addition, recombinant events were identified in the genomes of HeN21 and HuB20, and several events were located within genes associated with PRV virulence. Our data herein may suggest the emergence of novel PRV strains in China.
Collapse
Affiliation(s)
- Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuxiu Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Song
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanxia Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ting Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Cao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shengwei Yu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Wei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guofu Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
10
|
Liu Q, Kuang Y, Li Y, Guo H, Zhou C, Guo S, Tan C, Wu B, Chen H, Wang X. The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 2022; 14:v14071463. [PMID: 35891443 PMCID: PMC9325097 DOI: 10.3390/v14071463] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudorabies virus (PRV) can infect most mammals and is well known for causing substantial economic losses in the pig industry. In addition to pigs, PRV infection usually leads to severe itching, central nervous system dysfunction, and 100% mortality in its non-natural hosts. It should be noted that increasing human cases of PRV infection have been reported in China since 2017, and these patients have generally suffered from nervous system damage and even death. Here, we reviewed the current prevalence and variation in PRV worldwide as well as the PRV-caused infections in animals and humans, and briefly summarized the vaccines and diagnostic methods used for pseudorabies control. Most countries, including China, have control programs in place for pseudorabies in domestic pigs, and thus, the disease is on the decline; however, PRV is still globally epizootic and an important pathogen for pigs. In countries where pseudorabies in domestic pigs have already been eliminated, the risk of PRV transmission by infected wild animals should be estimated and prevented. As a member of the alphaherpesviruses, PRV showed protein-coding variation that was relatively higher than that of herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV), and its evolution was mainly contributed to by the frequent recombination observed between different genotypes or within the clade. Recombination events have promoted the generation of new variants, such as the variant strains resulting in the outbreak of pseudorabies in pigs in China, 2011. There have been 25 cases of PRV infections in humans reported in China since 2017, and they were considered to be infected by PRV variant strains. Although PRV infections have been sporadically reported in humans, their causal association remains to be determined. This review provided the latest epidemiological information on PRV for the better understanding, prevention, and treatment of pseudorabies.
Collapse
Affiliation(s)
- Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Kuang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yafei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huihui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chuyue Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| |
Collapse
|
11
|
A Review of Pseudorabies Virus Variants: Genomics, Vaccination, Transmission, and Zoonotic Potential. Viruses 2022; 14:v14051003. [PMID: 35632745 PMCID: PMC9144770 DOI: 10.3390/v14051003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky’s disease, has a broad host range including most mammals and avian species. In 2011, a PRV variant emerged in many Bartha K61-vaccinated pig herds in China and has attracted more and more attention due to its serious threat to domestic and wild animals, and even human beings. The PRV variant has been spreading in China for more than 10 years, and considerable research progresses about its molecular biology, pathogenesis, transmission, and host–virus interactions have been made. This review is mainly organized into four sections including outbreak and genomic evolution characteristics of PRV variants, progresses of PRV variant vaccine development, the pathogenicity and transmission of PRV variants among different species of animals, and the zoonotic potential of PRV variants. Considering PRV has caused a huge economic loss of animals and is a potential threat to public health, it is necessary to extensively explore the mechanisms involved in its replication, pathogenesis, and transmission in order to ultimately eradicate it in China.
Collapse
|
12
|
Tan L, Yao J, Lei L, Xu K, Liao F, Yang S, Yang L, Shu X, Duan D, Wang A. Emergence of a Novel Recombinant Pseudorabies Virus Derived From the Field Virus and Its Attenuated Vaccine in China. Front Vet Sci 2022; 9:872002. [PMID: 35558884 PMCID: PMC9087331 DOI: 10.3389/fvets.2022.872002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
The occurrence of pseudorabies (PR) caused by the PR virus (PRV) causes huge economic losses to the pig industry in China. Moreover, the potential threat of PRV to humans' health has received wide attention recently. The prevalence of two PRV genotypes and the application of their corresponding live attenuated vaccines increase the recombination possibility. In the present study, a novel recombinant PRV strain designed as HN-2019 was isolated from one sick piglet in Hunan province, China, its genetic features and pathogenicity were further investigated. The results showed that the glycoprotein E (gE) and gG genes of the HN-2019 strain displayed higher nucleotide homology with PRV classical strains (such as Ea and Fa) compared to others. However, its TK gene with continuous nucleotide deletions shared 100% nucleotide identity with the HB-98 vaccine strain, which was derived from the Ea strain. Moreover, the HN-2019 strain exhibited similar growth characteristics to that of the Ea strain, but its pathogenicity in mice was significantly lower than the latter one. The results above suggested that a naturally recombinant event might occur in the genome of the HN-2019 strain between the PRV classical strain and the HB-98 vaccine strain, which will provide useful guidelines for PRV vaccine design in the future.
Collapse
Affiliation(s)
- Lei Tan
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Lei Lei
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
| | - Kaiwen Xu
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
| | - Fan Liao
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
| | - Shibiao Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Lincheng Yang
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
| | - Xianghua Shu
- College of Animal Medicine, Yunnan Agricultural University, Kunming, China
| | - Deyong Duan
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
| | - Aibing Wang
- Lab of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, China
- PCB Biotechnology LLC, Rockville, MD, United States
- *Correspondence: Aibing Wang
| |
Collapse
|
13
|
Ren Q, Ren H, Gu J, Wang J, Jiang L, Gao S. The Epidemiological Analysis of Pseudorabies Virus and Pathogenicity of the Variant Strain in Shandong Province. Front Vet Sci 2022; 9:806824. [PMID: 35310414 PMCID: PMC8924479 DOI: 10.3389/fvets.2022.806824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
Pseudorabies (PR) is a disease that is seriously endangering the pig industry in China. To understand the current prevalence of pseudorabies virus (PRV) in Shandong Province, China, 19,292 serum samples were collected from 16 locations in Shandong from 2018 to 2020. The gE antibody was detected by enzyme-linked immunosorbent assay. Ninety-seven suspected cases of PRV infection were collected from sick pigs vaccinated with Bartha-K61 to isolate PRV. The results showed that the average positive rate of the PRV gE antibody decreased from 38.20% in 2018 to 18.12% in 2020, but there was a high positive rate in sows. The isolation rate of PRV was 13.40% (13/97), and four strains were purified through plaque assay (named PRV-SD1, PRV-SD2, PRV-SD3, and PRV-SD4). The homology and genetic evolution of four PRV strains based on gE, gC, gI, and TK genes were analyzed and showed that these four strains shared more than 99.0% nucleotide homology with the variant PRV XJ5 strain, and they clustered in the same sub-branch with the domestic variant PRV strains, including JS-2012 and XJ5. Furthermore, the pathogenicity of the isolated variant strain was assessed by intranasal infection of 16-week-old pigs with 1 mL PRV-SD1 strain. The results of the animal experiment demonstrated that the PRV-SD1–infected pigs exhibited obvious clinical symptoms as early as 2 days post inoculation (dpi), and all infected pigs died within 1 week. The severe hyperemia of meninges and swelling of lungs and tonsils were observed. Histopathology analysis showed the obvious lymphocytes necrosis of tonsils, interstitial pneumonia, and viral encephalitis. Many positive staining cells were observed in tonsils and brains through immunohistochemistry staining assay. Viral shedding in oropharyngeal and rectal swabs were detected at 2 dpi, reached a peak at 3 dpi, and then gradually decreased. The detection of viral loads in the tissues showed that tonsils had the highest virus titer, further proving it may be the target organ of variant PRV infection. In conclusion, variant PRV strains were still highly prevalent in Shandong Province, and they had a strong pathogenicity in pigs.
Collapse
Affiliation(s)
- Qinghai Ren
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hongwei Ren
- Dutch State Mines (DSM) Vitamin Co., Ltd. (Shandong), Liaocheng, China
| | - Jinyuan Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jin Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Song Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Song Gao
| |
Collapse
|
14
|
Sun Y, Zhao L, Fu ZF. Effective Cross-protection of a lyophilized live gE/gI/TK-deleted pseudorabies virus (PRV) vaccine against classical and variant PRV challenges. Vet Microbiol 2022; 267:109387. [PMID: 35276621 DOI: 10.1016/j.vetmic.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
15
|
Zheng HH, Jin Y, Hou CY, Li XS, Zhao L, Wang ZY, Chen HY. Seroprevalence investigation and genetic analysis of pseudorabies virus within pig populations in Henan province of China during 2018-2019. INFECTION GENETICS AND EVOLUTION 2021; 92:104835. [PMID: 33798759 DOI: 10.1016/j.meegid.2021.104835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
In late 2011, the outbreak of pseudorabies (PR) occurred in Bartha-K61-vaccinated pig farms and spread rapidly to many provinces of China, causing substantial economic losses to the swine industry. A total of 4708 pig serum samples from Henan province during 2018-2019 were collected to screen for the presence of pseudorabies virus (PRV) gE-specific antibodies, and phylogenetic analysis based on the gE gene of PRV was performed. Of the 4708 serum samples tested, 30.14% (1419/4708) were seropositive for PRV antibodies, based on PRV gE-coated enzyme-linked immunosorbent assay (ELISA), with slaughterhouses having the highest seroprevalence. The seropositive rates of PRV also varied with the region and the season. Phylogenetic analysis showed that three PRV isolates from this study were clustered in an independent branch together with the Chinese variant PRV strains (after 2012), and had a closer genetic relationship with the Chinese variant PRV strains, but differed genetically from the 4 early Chinese PRV strains and 4 European-American strains. This study suggests that three PRV isolates may belong to PRV variants, and the development of a novel vaccine against PRV variants is particularly urgent.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Yue Jin
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Cheng-Yao Hou
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Li Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, People's Republic of China
| | - Zhen-Ya Wang
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
16
|
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 2021; 36:588-607. [PMID: 33616892 PMCID: PMC7897889 DOI: 10.1007/s12250-020-00340-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease, is a highly infectious disease caused by pseudorabies virus (PRV). Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry. Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection. Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yadi Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Wei Luo
- Department of Animal Science and Technology, Huaihua Vocational and Technical College, Huaihua, 418000, China
| | - Xiaomin Yuan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
- PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
17
|
Bo Z, Miao Y, Xi R, Gao X, Miao D, Chen H, Jung YS, Qian Y, Dai J. Emergence of a novel pathogenic recombinant virus from Bartha vaccine and variant pseudorabies virus in China. Transbound Emerg Dis 2020; 68:1454-1464. [PMID: 32857916 DOI: 10.1111/tbed.13813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 12/20/2022]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has resulted in substantial economic losses in the swine industry worldwide. Previous reports have shown that the PRV variant is responsible for the Pseudorabies outbreaks in Bartha-K61-vaccinated farms in China. However, there is limited information about the evolution of recombination of the PRV variant. Here, we isolated two PRV variants from a Bartha-K61-vaccinated swine farm, named them the JSY7 and JYS13 strains, analysed their complete genomic sequences and evaluated pathogenicity. As results, the JSY7 and JSY13 strains showed different cytopathic effects and plaque sizes. The JSY7 and JSY13 strains had the same Aspartate insertions in the gE protein as other PRV variants. The JSY7 and JSY13 strains were clustered into the same clade based on a genomic phylogenetic analysis. However, the JSY7 strain was relatively close to recent PRV isolates in China, while the JSY13 strain was more closely related to earlier PRV isolates. Interestingly, the gC gene phylogenetic tree showed that the JSY7 strain belonged to genotype II lineage 3, while the JSY13 strain belonged to genotype I and is the same branch with the Bartha strain. Furthermore, the PRV variants were relatively distant from the Bartha strain in the phylogenetic analysis of the gB, gC and gD genes. Importantly, a recombination analysis showed that the JSY13 strain might be a natural recombinant between the minor parental genotype I Bartha strain and the major parental genotype II JSY7 strain. Finally, we also found that the JSY13 strain showed a moderate virulence compared to the JSY7 strain in mice. Taken together, our data provide direct evidence for genomic recombination of PRV in nature, which may play an important role in the evolution and virulence of PRV. This discovery suggests that live PRV vaccine can act as genetic donors for genomic recombination.
Collapse
Affiliation(s)
- Zongyi Bo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yurun Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Denian Miao
- Institute of Animal Husbandary & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Liu J, Chen C, Li X. Novel Chinese pseudorabies virus variants undergo extensive recombination and rapid interspecies transmission. Transbound Emerg Dis 2020; 67:2274-2276. [PMID: 32786133 DOI: 10.1111/tbed.13784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Jinbiao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Changhai Chen
- Jiangsu Provincial Center for Animal Disease Control and Prevention, Nanjing, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Kedkovid R, Sirisereewan C, Thanawongnuwech R. Major swine viral diseases: an Asian perspective after the African swine fever introduction. Porcine Health Manag 2020; 6:20. [PMID: 32637149 PMCID: PMC7336096 DOI: 10.1186/s40813-020-00159-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Asia is a major pig producer of the world, and at present, African swine fever virus (ASFV) continues to significantly impact the Asian pig industry. Since more than 50% of the world’s pig population is in Asia, ASFV outbreaks in Asia will affect the global pig industry. Prior to the introduction of ASF, several outbreaks of major swine viruses occurred in Asia over the last two decades, including porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and foot and mouth disease virus (FMDV). The rapid spreading of those viruses throughout Asia involve many factors such as the various pig production systems and supply chains ranging from back-yard to intensive industrial farms, animal movement and animal product trading within and among countries, and consumer behaviors. ASF has notoriously been known as a human-driven disease. Travelers and international trading are the major ASFV-carriers for the transboundary transmission and introduction to naïve countries. Globalization puts the entire pig industry at risk for ASF and other infectious diseases arising from Asian countries. Disease control strategies for the various pig production systems in Asia are challenging. In order to ensure future food security in the region and to prevent the deleterious consequences of ASF and other major viral disease outbreaks, disease control strategies and production systems must be improved and modernized.
Collapse
Affiliation(s)
- Roongtham Kedkovid
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand.,Swine Reproduction Research Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|