1
|
Wang HR, Liu T, Gao X, Wang HB, Xiao JH. Impact of climate change on the global circulation of West Nile virus and adaptation responses: a scoping review. Infect Dis Poverty 2024; 13:38. [PMID: 38790027 PMCID: PMC11127377 DOI: 10.1186/s40249-024-01207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.
Collapse
Affiliation(s)
- Hao-Ran Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiang Gao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hong-Bin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jian-Hua Xiao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Lippi CA, Mundis SJ, Sippy R, Flenniken JM, Chaudhary A, Hecht G, Carlson CJ, Ryan SJ. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasit Vectors 2023; 16:302. [PMID: 37641089 PMCID: PMC10463544 DOI: 10.1186/s13071-023-05912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Species distribution modeling (SDM) has become an increasingly common approach to explore questions about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we conducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional models were developed for areas in Africa and Asia, while more localized modeling efforts were most common for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne disease risk.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| | - Stephanie J Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Rachel Sippy
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK
| | - J Matthew Flenniken
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Anusha Chaudhary
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Gavriella Hecht
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
3
|
Predicting the Impact of Climate Change on the Distribution of a Neglected Arboviruses Vector (Armigeres subalbatus) in China. Trop Med Infect Dis 2022; 7:tropicalmed7120431. [PMID: 36548686 PMCID: PMC9788555 DOI: 10.3390/tropicalmed7120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The geographic boundaries of arboviruses continue to expand, posing a major health threat to millions of people around the world. This expansion is related to the availability of effective vectors and suitable habitats. Armigeres subalbatus (Coquillett, 1898), a common and neglected species, is of increasing interest given its potential vector capacity for Zika virus. However, potential distribution patterns and the underlying driving factors of Ar. subalbatus remain unknown. In the current study, detailed maps of their potential distributions were developed under both the current as well as future climate change scenarios (SSP126 and SSP585) based on CMIP6 data, employing the MaxEnt model. The results showed that the distribution of the Ar. subalbatus was mainly affected by temperature. Mean diurnal range was the strongest predictor in shaping the distribution of Ar. subalbatus, with an 85.2% contribution rate. By the 2050s and 2070s, Ar. subalbatus will have a broader potential distribution across China. There are two suitable expansion types under climate change in the 2050s and 2070s. The first type is continuous distribution expansion, and the second type is sporadic distribution expansion. Our comprehensive analysis of Ar. subalbatus’s suitable distribution areas shifts under climate change and provides useful and insightful information for developing management strategies for future arboviruses.
Collapse
|
4
|
Ramadan SK, Abdel Haleem DR, Abd-Rabboh HSM, Gad NM, Abou-Elmagd WSI, Haneen DSA. Synthesis, SAR studies, and insecticidal activities of certain N-heterocycles derived from 3-((2-chloroquinolin-3-yl)methylene)-5-phenylfuran-2(3 H)-one against Culex pipiens L. larvae. RSC Adv 2022; 12:13628-13638. [PMID: 35530392 PMCID: PMC9069532 DOI: 10.1039/d2ra02388a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
An acid hydrazide derivative was synthesized and transformed into a variety of valuable N-heterocycles such as pyridazinone, oxadiazole, triazolopyridazinone, and triazole derivatives via reactions with certain carbon electrophiles such as 4-methoxybenzaldehyde, indole-3-carbaldehyde, pentan-2,4-dione, and carbon disulfide. The chemical structures of all prepared compounds were verified via their analytical and spectroscopic data. The insecticidal activity of the N-heterocycles was evaluated against field and lab strains of the third larval instar of Culex pipiens. All tested compounds exhibited higher larvicidal activity against the lab strains compared to the field strains, with dissimilar ratios. The obtained results demonstrate that the high toxicity achieved by oxadiazole followed the order of furanone, pyridazinone and hydrazide, with lower LC50 values of the hydrazone and N-acetylpyridazinone derivatives compared to that of imidacloprid. Interestingly, these compounds are promising agents for insect pest control, especially since they are insoluble in water and can overcome the disadvantages of neonicotinoid applications in pest management programs.
Collapse
Affiliation(s)
- Sayed K Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Doaa R Abdel Haleem
- Entomology Department, Faculty of Science, Ain Shams University 11566 Cairo Egypt
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha 61413 Saudi Arabia
| | - Nourhan M Gad
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Wael S I Abou-Elmagd
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - David S A Haneen
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
5
|
Outammassine A, Zouhair S, Loqman S. Global potential distribution of three underappreciated arboviruses vectors (Aedes japonicus, Aedes vexans and Aedes vittatus) under current and future climate conditions. Transbound Emerg Dis 2021; 69:e1160-e1171. [PMID: 34821477 DOI: 10.1111/tbed.14404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
Arboviruses (arthropod-borne viruses) are expanding their geographic range, posing significant health threats to millions of people worldwide. This expansion is associated with efficient and suitable vector availability. Apart from the well-known Aedes aegypti and Ae. albopictus, other Aedes species may potentially promote the geographic spread of arboviruses because these viruses have similar vector requirements. Aedes japonicus, Ae. vexans and Ae. vittatus are a growing concern, given their potential and known vector competence for several arboviruses including dengue, chikungunya, and Zika viruses. In the present study, we developed detailed maps of their global potential distributions under both current and future (2050) climate conditions, using an ecological niche modeling approach (Maxent). Under present-day conditions, Ae. japonicus and Ae. vexans have suitable areas in the northeastern United States, across Europe and in southeastern China, whereas the tropical regions of South America, Africa and Asia are more suitable for Ae. vittatus. Future scenarios anticipated range changes for the three species, with each expected to expand into new areas that are currently not suitable. By 2050, Ae. japonicus will have a broader potential distribution across much of Europe, the United States, western Russia and central Asia. Aedes vexans may be able to expand its range, especially in Libya, Egypt and southern Australia. For Ae. vittatus, future projections indicated areas at risk in sub-Saharan Africa and the Middle East. As such, these species deserve as much attention as Ae. aegypti and Ae. albopictus when processing arboviruses risk assessments and our findings may help to better understand the potential distribution of each species.
Collapse
Affiliation(s)
- Abdelkrim Outammassine
- Laboratoire de Lutte contre les Maladies Infectieuses, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Said Zouhair
- Laboratoire de Lutte contre les Maladies Infectieuses, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Bacteriology-Virology, Avicienne Hospital Military, Marrakech, Morocco
| | - Souad Loqman
- Laboratoire de Lutte contre les Maladies Infectieuses, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
6
|
Cuervo PF, Artigas P, Mas-Coma S, Bargues MD. West Nile virus in Spain: Forecasting the geographical distribution of risky areas with an ecological niche modelling approach. Transbound Emerg Dis 2021; 69:e1113-e1129. [PMID: 34812589 DOI: 10.1111/tbed.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
West Nile virus (WNV), a well-known emerging vector-borne arbovirus with a zoonotic life cycle, represents a threat to both public and animal health. Transmitted by ornithophilic mosquitoes, its transmission is difficult to predict and even more difficult to prevent. The massive and unprecedented number of human cases and equid outbreaks in Spain during 2020 interpellates for new approaches. For the first time, we present an integrate analysis from a niche perspective to provide an insight to the situation of West Nile disease (WND) in Spain. Our modelling approach benefits from the combined use of global occurrence records of outbreaks of WND in equids and of its two alleged main vectors in Spain, Culex pipiens and Cx. perexiguus. Maps of the climatic suitability for the presence of the two vectors species and for the circulation of WNV are provided. The main outcome of our study is a map delineating the areas under certain climatic risk of transmission. Our analyses indicate that the climatic risk of transmission of WND is medium in areas nearby the south Atlantic coastal area of the Cadiz Gulf and the Mediterranean coast, and high in southwestern Spain. The higher risk of transmission in the basins of the rivers Guadiana and Guadalquivir cannot be attributed exclusively to the local abundance of Cx. pipiens, but could be ascribed to the presence and abundance of Cx. perexiguus. Furthermore, this integrated analysis suggests that the WNV presents an ecological niche of its own, not fully overlapping the ones of its hosts or vector, and thus requiring particular environmental conditions to succeed in its infection cycle.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain.,Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET - Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Patricio Artigas
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Santiago Mas-Coma
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Dolores Bargues
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|