1
|
Kleij L, Bruder E, Raoux-Barbot D, Lejal N, Nevers Q, Deloizy C, Da Costa B, Legrand L, Barrey E, Chenal A, Pronost S, Delmas B, Dhorne-Pollet S. Genomic characterization of equine influenza A subtype H3N8 viruses by long read sequencing and functional analyses of the PB1-F2 virulence factor of A/equine/Paris/1/2018. Vet Res 2024; 55:36. [PMID: 38520035 PMCID: PMC10960481 DOI: 10.1186/s13567-024-01289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.
Collapse
Affiliation(s)
- Lena Kleij
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Elise Bruder
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Dorothée Raoux-Barbot
- CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Nathalie Lejal
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Quentin Nevers
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Charlotte Deloizy
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Loïc Legrand
- LABÉO Frank Duncombe, 14280, Saint-Contest, France
- BIOTARGEN, Normandie Univ, UNICAEN, 14000, Caen, France
| | - Eric Barrey
- AgroParisTech, Unité de Génétique Animale et Biologie Intégrative, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alexandre Chenal
- CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 14280, Saint-Contest, France
- BIOTARGEN, Normandie Univ, UNICAEN, 14000, Caen, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie Moléculaires, INRAE, UVSQ, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Sophie Dhorne-Pollet
- AgroParisTech, Unité de Génétique Animale et Biologie Intégrative, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
2
|
Chappell DE, Barnett DC, James K, Craig B, Bain F, Gaughan E, Schneider C, Vaala W, Barnum SM, Pusterla N. Voluntary Surveillance Program for Equine Influenza Virus in the United States during 2008-2021. Pathogens 2023; 12:pathogens12020192. [PMID: 36839464 PMCID: PMC9961984 DOI: 10.3390/pathogens12020192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
A voluntary upper respiratory biosurveillance program in the USA received 9740 nasal swab submissions during the years 2008-2021 from 333 veterinarians and veterinary clinics. The nasal swabs were submitted for qPCR testing for six common upper respiratory pathogens:equine influenza virus (EIV), equine herpesvirus-1 (EHV-1), equine herpesvirus-4 (EHV-4), Streptococcus equi subspecies equi (S. equi), equine rhinitis A virus (ERAV), and equine rhinitis B virus (ERBV). Additional testing was performed for equine gamma herpesvirus-2 (EHV-2) and equine gamma herpesvirus-5 (EHV-5) and the results are reported. Basic frequency statistics and multivariate logistic regression models were utilized to determine the associations between risk factors and EIV positivity. The EIV qPCR-positivity rate was 9.9%. Equids less than 9 years of age with a recent history of travel and seasonal occurrence in winter and spring were the most common population that were qPCR positive for EIV. This ongoing biosurveillance program emphasizes the need for molecular testing for pathogen identification, which is critical for decisions associated with therapeutics and biosecurity intervention for health management and vaccine evaluations and development.
Collapse
Affiliation(s)
- Duane E. Chappell
- Merck Animal Health, Madison, NJ 07940, USA
- Correspondence: ; Tel.: +1-866-349-3497
| | | | | | | | | | | | | | | | - Samantha M. Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines (Basel) 2022; 10:vaccines10101718. [PMID: 36298583 PMCID: PMC9610386 DOI: 10.3390/vaccines10101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Equine influenza is a highly contagious disease caused by the H3N8 equine influenza virus (EIV), which is endemically distributed throughout the world. It infects equids, and interspecies transmission to dogs has been reported. The H3N8 Florida lineage, which is divided into clades 1 and 2, is the most representative lineage in the Americas. The EIV infects the respiratory system, affecting the ciliated epithelial cells and preventing the elimination of foreign bodies and substances. Certain factors related to the disease, such as an outdated vaccination plan, age, training, and close contact with other animals, favor the presentation of equine influenza. This review focuses on the molecular, pathophysiological, and epidemiological characteristics of EIV in the Americas to present updated information to achieve prevention and control of the virus. We also discuss the need for monitoring the disease, the use of vaccines, and the appropriate application of those biologicals, among other biosecurity measures that are important for the control of the virus.
Collapse
Affiliation(s)
- Juliana Gonzalez-Obando
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
| | - Jorge Eduardo Forero
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Angélica M Zuluaga-Cabrera
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria Autónoma de las Américas, Circular 73 N°35-04, Medellín 050010, Colombia
| | - Julián Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
- Correspondence:
| |
Collapse
|
4
|
Lee K, Pusterla N, Barnum SM, Lee DH, Martínez-López B. Investigation of cross-regional spread and evolution of equine influenza H3N8 at US and global scales using Bayesian phylogeography based on balanced subsampling. Transbound Emerg Dis 2022; 69:e1734-e1748. [PMID: 35263501 DOI: 10.1111/tbed.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
Equine influenza virus (EIV) is a highly contagious pathogen of equids, and a well-known burden in global equine health. EIV H3N8 variants seasonally emerged and resulted in EIV outbreaks in the United States (US) and worldwide. The present study evaluated the pattern of cross-regional EIV H3N8 spread and evolutionary characteristics at US and global scales using Bayesian phylogeography with balanced subsampling based on regional horse population size. A total of 297 Haemagglutinin (HA) sequences of global EIV H3N8 were collected from 1963 to 2019 and subsampled to global subset (n = 67), raw US sequences (n = 100) and US subset (n = 44) datasets. Discrete trait phylogeography analysis was used to estimate the transmission history of EIV using four global and US genome datasets. The North American lineage was the major source of globally dominant EIV variants and spread to other global regions. The US EIV strains generally spread from the southern and midwestern regions to other regions. The EIV H3N8 accumulated approximately three nucleotide substitutions per year in the HA gene under heterogenous local positive selection. Our findings will guide better decision making of target intervention strategies of EIV H3N8 infection and provide the better scheme of genomic surveillance in the US and global equine health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, USA
| | - Samantha M Barnum
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|