1
|
Gamal MAN, El-Nagar EMS, Khattab MS, Salem HM. Molecular discernment and histopathological features of oncogenic Marek's disease virus among different farmed avian species in Egypt. Sci Rep 2025; 15:15409. [PMID: 40316597 PMCID: PMC12048604 DOI: 10.1038/s41598-025-98196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Marek's disease virus (MDV) is a highly contagious tumor virus that causes detrimental outbreaks in poultry. Since its initial description, the virus's virulence and acuteness have progressively increased. During this study, we investigated suspected tumorigenic cases of MDV-1 infection among different avian species (chicken, ducks, and turkey) in various Egyptian governorates, including Al-Sharqia, Gharbia, Dakahlia, Port Said, Damietta, and Fayoum, between 2020 and 2023. A molecular study targeting the virulent oncogenic Meq gene revealed that the tumorigenic masses in chicken and duck tissues were identified as virulent MDV-1, but turkeys with cauliflower-like ovarian tumors showed negative results. The isolated MDV-1 strain of chicken origin was given the designation YLE2021 and the sequence was submitted to GenBank with accession number PQ59985. The amino acid sequence of the YLE2021 chicken Meq showed a 296 amino acid length (short Meq), which is characteristic of very virulent Meq and contains seven proline motifs, three of them are interrupted (187 PLQPP 191, 195 PAPP198, 224 PPQPP 228). Experimental infection of one-day-old specific-pathogen-free (SPF) chickens with a strain recovered from a chicken tumor resulted in 40% of infected birds showing the classical neural form of MDV infection. No parenchymal tumors were observed, and the virus could be molecularly detected in the peripheral blood mononuclear cells (PMNCs) of infected and neighboring uninfected SPF birds. In conclusion, this is the first report to identify the presence of MDV-1 in Egyptian ducks. Further investigations are recommended to detect the main cause of the turkeys' tumor. Continuous molecular monitoring of circulating field viruses is crucial to investigate the mechanisms behind the increase in virus evolution, which could lead to increased virus virulence and allow the virus to evade vaccine protection.
Collapse
Affiliation(s)
- Maha A N Gamal
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Eman M S El-Nagar
- Genetic Engineering Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agricultural Research Centre (ARC), 11381, Cairo, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, 11892, Cairo, Egypt.
| |
Collapse
|
2
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Patria JN, Jwander L, Mbachu I, Parcells L, Ladman B, Trimpert J, Kaufer BB, Tavlarides-Hontz P, Parcells MS. The Meq Genes of Nigerian Marek's Disease Virus (MDV) Field Isolates Contain Mutations Common to Both European and US High Virulence Strains. Viruses 2024; 17:56. [PMID: 39861844 PMCID: PMC11769123 DOI: 10.3390/v17010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus Mardivirus. MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains. Mutations common to field strains that can overcome vaccine protection were identified in the C-terminal proline-rich repeats of the oncoprotein Meq (Marek's EcoRI-Q-encoded protein). These mutations in meq have been found to be distinct to their region of origin, with high virulence strains obtained in Europe differing from those having evolved in the US. The present work reports on meq mutations identified in MDV field strains in Nigeria, arising at farms employing different vaccination practices. MATERIALS AND METHODS DNA was isolated from FTA cards obtained at 12 farms affected by increased MD in the Plateau State, Nigeria. These sequences included partial whole genomes as well as targeted sequences of the meq oncogenes from these strains. Several of the meq genes were cloned for expression and their localization ability to interact with the chicken NF-IL3 protein, a putative Meq dimerization partner, were assessed. RESULTS Sequence analysis of the meq genes from these Nigerian field strains revealed an RB1B-like lineage co-circulating with a European Polen5-like lineage, as well as recombinants harboring a combination of these mutations. In a number of these isolates, Meq mutations accumulated in both N-terminal and C-terminal domains. DISCUSSION Our data, suggest a direct effect of the vaccine strategy on the selection of Meq mutations. Moreover, we posit the evolution of the next higher level of virulence MDVs, a very virulent plus plus pathotype (vv++).
Collapse
Affiliation(s)
- Joseph N. Patria
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Luka Jwander
- Central Diagnostic Laboratory, National Veterinary Research Institute, Vom 930101, Nigeria;
| | - Ifeoma Mbachu
- Department of Biological Sciences, Lincoln University, Lincoln University, PA 19352, USA;
| | - Levi Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Brian Ladman
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (J.T.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany; (J.T.); (B.B.K.)
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Phaedra Tavlarides-Hontz
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| | - Mark S. Parcells
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (L.P.); (B.L.); (P.T.-H.)
| |
Collapse
|
4
|
Chacón RD, Sánchez-Llatas CJ, L Pajuelo S, Diaz Forero AJ, Jimenez-Vasquez V, Médico JA, Soto-Ugaldi LF, Astolfi-Ferreira CS, Piantino Ferreira AJ. Molecular characterization of the meq oncogene of Marek's disease virus in vaccinated Brazilian poultry farms reveals selective pressure on prevalent strains. Vet Q 2024; 44:1-13. [PMID: 38465827 DOI: 10.1080/01652176.2024.2318198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - Andrea J Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jack A Médico
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | | | | |
Collapse
|
5
|
Ding T, Xiong M, Xu Y, Pu X, Wang QS, Xu MR, Shao HX, Qian K, Dang HB, Qin AJ. Dynamic Changes in Viral Loads during Co-Infection with a Recombinant Turkey Herpesvirus Vector Vaccine and Very Virulent Marek's Disease Virus In Vivo. Viruses 2024; 16:1042. [PMID: 39066205 PMCID: PMC11281522 DOI: 10.3390/v16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus (MDV), is a common infectious tumor disease in chickens and was the first neoplastic disease preventable by vaccination. However, the vaccine cannot completely prevent virulent MDV infections, allowing both the vaccine and virulent MDV to coexist in the same chicken for extended periods. This study aims to investigate the changes in viral load of the very virulent strain Md5 and the rHVT-IBD vaccine in different chicken tissues using a real-time PCR assay. The results showed that the rHVT-IBD vaccine significantly reduced the viral load of MDV-Md5 in different organs, while the load of rHVT-IBD was significantly increased when co-infected with Md5. Additionally, co-infection with Md5 and rHVT-IBD in chickens not only changed the original viral load of both viruses but also affected the positive rate of Md5 at 14 days post-vaccination. The positive rate decreased from 100% to 14.29% (feather tips), 0% (skin), 33.33% (liver), 16.67% (spleen), 28.57% (thymus), 33.33% (bursa), and 66.67% (PBL), respectively. This study enhances our understanding of the interactions between HVT vector vaccines and very virulent MDV in chickens and provides valuable insights for the future development of MD vaccines.
Collapse
Affiliation(s)
- Tian Ding
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Min Xiong
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yang Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China;
| | - Xing Pu
- Nanchang Boehringer—Ingelheim Animal Health Co., Ltd., Nanchang 330096, China; (X.P.); (H.-b.D.)
| | - Qin-sen Wang
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Mo-ru Xu
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hong-xia Shao
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225012, China
| | - Kun Qian
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225012, China
| | - Hai-bin Dang
- Nanchang Boehringer—Ingelheim Animal Health Co., Ltd., Nanchang 330096, China; (X.P.); (H.-b.D.)
| | - Ai-jian Qin
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
6
|
Cheng MC, Lai GH, Tsai YL, Lien YY. Circulating hypervirulent Marek's disease viruses in vaccinated chicken flocks in Taiwan by genetic analysis of meq oncogene. PLoS One 2024; 19:e0303371. [PMID: 38728352 PMCID: PMC11086920 DOI: 10.1371/journal.pone.0303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.
Collapse
Affiliation(s)
- Ming-Chu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Guan-Hua Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Yang Lien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
7
|
Kim T, Hearn CJ, Mays J, Velez-Irizarry D, Reddy SM, Spatz SJ, Cheng HH, Dunn JR. Phenotypic Characterization of Recombinant Marek's Disease Virus in Live Birds Validates Polymorphisms Associated with Virulence. Viruses 2023; 15:2263. [PMID: 38005939 PMCID: PMC10674313 DOI: 10.3390/v15112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marek's disease (MD) is a highly infectious lymphoproliferative disease in chickens with a significant economic impact. Mardivirus gallidalpha 2, also known as Marek's disease virus (MDV), is the causative pathogen and has been categorized based on its virulence rank into four pathotypes: mild (m), virulent (v), very virulent (vv), and very virulent plus (vv+). A prior comparative genomics study suggested that several single-nucleotide polymorphisms (SNPs) and genes in the MDV genome are associated with virulence, including nonsynonymous (ns) SNPs in eight open reading frames (ORF): UL22, UL36, UL37, UL41, UL43, R-LORF8, R-LORF7, and ICP4. To validate the contribution of these nsSNPs to virulence, the vv+MDV strain 686 genome was modified by replacing nucleotides with those observed in the vMDV strains. Pathogenicity studies indicated that these substitutions reduced the MD incidence and increased the survival of challenged birds. Furthermore, using the best-fit pathotyping method to rank the virulence, the modified vv+MDV 686 viruses resulted in a pathotype similar to the vvMDV Md5 strain. Thus, these results support our hypothesis that SNPs in one or more of these ORFs are associated with virulence but, as a group, are not sufficient to result in a vMDV pathotype, suggesting that there are additional variants in the MDV genome associated with virulence, which is not surprising given this complex phenotype and our previous finding of additional variants and SNPs associated with virulence.
Collapse
Affiliation(s)
- Taejoong Kim
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| | - Cari J. Hearn
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Jody Mays
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Deborah Velez-Irizarry
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Sanjay M. Reddy
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Stephen J. Spatz
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| | - Hans H. Cheng
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - John R. Dunn
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| |
Collapse
|
8
|
Song B, Zeb J, Hussain S, Aziz MU, Circella E, Casalino G, Camarda A, Yang G, Buchon N, Sparagano O. A Review on the Marek's Disease Outbreak and Its Virulence-Related meq Genovariation in Asia between 2011 and 2021. Animals (Basel) 2022; 12:540. [PMID: 35268107 PMCID: PMC8908813 DOI: 10.3390/ani12050540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Marek's disease is an infectious disease in poultry that usually appears in neural and visceral tumors. This disease is caused by Gallid alphaherpesvirus 2 infection in lymphocytes, and its meq gene is commonly used in virulent studies for coding the key protein functional in oncogenic transformation of the lymphocytes. Although vaccines have been introduced in many countries to control its spread and are proven to be efficient, recent records show a decline of such efficiency due to viral evolution. In this study, we reviewed the outbreak of Marek's disease in Asia for the last 10 years, together with associated meq sequences, finding a total of 36 studies recording outbreaks with 132 viral strains in 12 countries. The visceral type is the most common (13 in 16 studies) form of Marek's disease, but additional unobserved neural changes may exist. MD induces liver lymphoma most frequently (11 in 14 studies), and tumors were also found in spleen, kidney, heart, gizzard, skin, intestine, lung, and sciatic nerve. Twelve viral strains distributed in China have been reported to escape the CVI988 vaccine, reaching a mortality rate of more than 30%. Phylogenetic analyses show the internal connection between the Middle East (Turkey, Iraq, Iran, Saudi Arabia), South Asia (India, Indonesia), and East Asia (China and Japan), while external viral communications might occasionally occur. In 18 strains with both sequential and mortality data, amino acid alignment showed several point substitutions that may be related to its virulence. We suggest more behavioral monitoring in Marek's disease-endemic regions and further studies on strain virulence, together with its Meq protein structural changes.
Collapse
Affiliation(s)
- Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari, S.P. Casamassima km. 3, 70010 Valenzano, Italy; (E.C.); (G.C.); (A.C.)
| | - Gaia Casalino
- Department of Veterinary Medicine, University of Bari, S.P. Casamassima km. 3, 70010 Valenzano, Italy; (E.C.); (G.C.); (A.C.)
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, S.P. Casamassima km. 3, 70010 Valenzano, Italy; (E.C.); (G.C.); (A.C.)
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA;
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| |
Collapse
|