1
|
Sudhakar SB, Mishra N, Kalaiyarasu S, Agrawal F, Sanyal A. Genetic characterization of lumpy skin disease virus (LSDV) isolates from an outbreak on Great Nicobar Island, India, in 2022 reveals the involvement of a cluster 2.5 recombinant LSDV strain (East/Southeast Asian lineage). Arch Virol 2025; 170:68. [PMID: 40053157 DOI: 10.1007/s00705-025-06252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 03/29/2025]
Abstract
Lumpy skin disease (LSD) has emerged as a global threat to cattle health and production. Although India has been encountering regular episodes of LSD epidemics on the mainland since 2019, the Andaman and Nicobar Islands remained free of LSD until 2021. In this study, we investigated the first LSD outbreak on Great Nicobar Island in 2022 and examined the genetic characteristics of the LSDV strain associated with this outbreak. The morbidity and mortality rates in cattle were 38.29% and 1.89%, respectively. We screened 123 samples (whole blood, nasal swab, or skin tissue) from 111 cattle by LSDV real-time PCR and sera from 86 cattle by LSDV antibody ELISA, and the results confirmed LSDV infection. Subsequent nucleotide sequencing and phylogenetic analysis of five selected marker genes (GPCR, RPO30, P32, EEV, and B22R) revealed that the LSDV strain from Great Nicobar Island resembled cluster 2.5 LSDV recombinant strains from East and Southeast Asia but was distinct from wild-type LSDV strains (1.2.1, 1.2.2) circulating in mainland India, indicating an exotic source of introduction. Phylogenetic analysis using a concatenated sequence (GPCR-RPO30-P32-EEV-B22R) showed that both the wild-type and recombinant LSDV strains formed well-supported clusters, indicating that this type of analysis may be used as an alternative to whole-genome sequence analysis. We also found that determination of the nucleotide sequence of the C-terminal 717 bp of the B22R gene may be sufficient for reliable assignment of circulating LSDV isolates to a particular cluster. This is the first report of the detection of a recombinant LSDV strain in India, demonstrating the spread of cluster 2.5 recombinant LSDV further into South Asia. Our findings highlight the value of LSDV surveillance and genetic analysis for LSDV epidemiology, which may be helpful for developing effective control strategies.
Collapse
Affiliation(s)
- Shashi Bhushan Sudhakar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Niranjan Mishra
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India.
| | - Semmannan Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Falguni Agrawal
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Aniket Sanyal
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| |
Collapse
|
2
|
Song Y, Zuo O, Zhang G, Hu J, Tian Z, Guan G, Luo J, Yin H, Shang Y, Du J. Emergence of Lumpy Skin Disease Virus Infection in Yaks, Cattle-Yaks, and Cattle on the Qinghai-Xizang Plateau of China. Transbound Emerg Dis 2024; 2024:2383886. [PMID: 40303140 PMCID: PMC12016979 DOI: 10.1155/2024/2383886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 05/02/2025]
Abstract
Lumpy skin disease (LSD) is a viral disease caused by lumpy skin disease virus (LSDV), which mainly infects cattle and can cause huge economic losses. In May 2023, yaks, cattle-yaks, and cattle in Tibet (Xizang), China, developed fever, skin nodules, and severe discharges and were suspected to be cases of LSD. Samples from these animals were analyzed using molecular biology and serological methods. The RPO30, P32, and GPCR genes were amplified by PCR and sequenced, and the whole genome of the virus was determined using viral metagenomics technology. Sequencing results showed that it was indeed an LSDV infection, and enzyme-linked immunosorbent assay results confirmed the presence of LSDV antibodies. The whole genome phylogenetic tree shows that LSDV/CHINA/Tibet/2023 is different from the previous epidemic strains in China, but clusters with India 2022 strain. This is the first report of LSD in yaks, cattle-yaks, and cattle on the highest altitude plateau in the world.
Collapse
Affiliation(s)
- Yuqing Song
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Ou Zuo
- Animal Epidemic Disease Prevention and Control Center of Agricultural and Rural Bureau of Ali Prefecture, Gaer County, Xizang Autonomous Region 859499, China
| | - Gelin Zhang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Jianwu Hu
- College of Veterinary MedicineHuazhong Agricultural University, Wuhan 430070, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou University, Yangzhou 225009, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and PreventionCollege of Veterinary Medicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu 730046, China
| |
Collapse
|
3
|
Xie S, Cui L, Liao Z, Zhu J, Ren S, Niu K, Li H, Jiang F, Wu J, Wang J, Wu J, Song B, Wu W, Peng C. Genomic analysis of lumpy skin disease virus asian variants and evaluation of its cellular tropism. NPJ Vaccines 2024; 9:65. [PMID: 38514651 PMCID: PMC10957905 DOI: 10.1038/s41541-024-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a poxvirus that mainly affects cattle and can lead to symptoms such as severe reduction in milk production as well as infertility and mortality, which has resulted in dramatic economic loss in affected countries in Africa, Europe, and Asia. In this study, we successfully isolated two strains of LSDV from different geographical regions in China. Comparative genomic analyses were performed by incorporating additional LSDV whole genome sequences reported in other areas of Asia. Our analyses revealed that LSDV exhibited an 'open' pan-genome. Phylogenetic analysis unveiled distinct branches of LSDV evolution, signifying the prevalence of multiple lineages of LSDV across various regions in Asia. In addition, a reporter LSDV expressing eGFP directed by a synthetic poxvirus promoter was generated and used to evaluate the cell tropism of LSDV in various mammalian and avian cell lines. Our results demonstrated that LSDV replicated efficiently in several mammalian cell lines, including human A549 cells. In conclusion, our results underscore the necessity for strengthening LSD outbreak control measures and continuous epidemiological surveillance.
Collapse
Affiliation(s)
- Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Lianxin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Zhiyi Liao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Fei Jiang
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jie Wang
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Jian Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China.
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Sendow I, Meki IK, Dharmayanti NLPI, Hoerudin H, Ratnawati A, Settypalli TBK, Ahmed HO, Nuradji H, Saepulloh M, Adji RS, Fairusya N, Sari F, Anindita K, Cattoli G, Lamien CE. Molecular characterization of recombinant LSDV isolates from 2022 outbreak in Indonesia through phylogenetic networks and whole-genome SNP-based analysis. BMC Genomics 2024; 25:240. [PMID: 38438878 PMCID: PMC10913250 DOI: 10.1186/s12864-024-10169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
Lumpy skin disease (LSD) is a transboundary viral disease of cattle and water buffaloes caused by the LSD virus, leading to high morbidity, low mortality, and a significant economic impact. Initially endemic to Africa only, LSD has spread to the Middle East, Europe, and Asia in the past decade. The most effective control strategy for LSD is the vaccination of cattle with live-attenuated LSDV vaccines. Consequently, the emergence of two groups of LSDV strains in Asian countries, one closely related to the ancient Kenyan LSDV isolates and the second made of recombinant viruses with a backbone of Neethling-vaccine and field isolates, emphasized the need for constant molecular surveillance. This current study investigated the first outbreak of LSD in Indonesia in 2022. Molecular characterization of the isolate circulating in the country based on selected LSDV-marker genes: RPO30, GPCR, EEV glycoprotein gene, and B22R, as well as whole genome analysis using several analytical tools, indicated the Indonesia LSDV isolate as a recombinant of LSDV_Neethling_vaccine_LW_1959 and LSDV_NI-2490. The analysis clustered the Indonesia_LSDV with the previously reported LSDV recombinants circulating in East and Southeast Asia, but different from the recombinant viruses in Russia and the field isolates in South-Asian countries. Additionally, this study has demonstrated alternative accurate ways of LSDV whole genome analysis and clustering of isolates, including the recombinants, instead of whole-genome phylogenetic tree analysis. These data will strengthen our understanding of the pathogens' origin, the extent of their spread, and determination of suitable control measures required.
Collapse
Affiliation(s)
- Indrawati Sendow
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria.
| | - Ni Luh Putu Indi Dharmayanti
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Heri Hoerudin
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Atik Ratnawati
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| | - Harimurti Nuradji
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Muharam Saepulloh
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Rahmat Setya Adji
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | - Nuha Fairusya
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, West Java, Indonesia
| | | | | | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, A-1400, Vienna, P.O. Box 100, Austria
| |
Collapse
|
5
|
Sprygin A, van Schalkwyk A, Mazloum A, Byadovskaya O, Chvala I. Genome sequence characterization of the unique recombinant vaccine-like lumpy skin disease virus strain Kurgan/2018. Arch Virol 2024; 169:23. [PMID: 38193946 DOI: 10.1007/s00705-023-05938-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
In 2018, the molecular epidemiology of lumpy skin disease in Russia was characterized by a surge in novel recombinant vaccine-like strains causing outbreaks along the southern border, spreading in an easterly direction. Currently, five distinct novel recombinant vaccine-like lineages have been described, designated as clusters 2.1 to 2.5. Based on the complete genome sequence analysis of the causative lumpy skin disease virus (Kurgan/Russia/2018), obtained from an eponymous outbreak, the genome was shown to be composed of a Neethling vaccine strain virus as the dominant parental strain and KSGPO vaccine virus as its minor parental strain. These features are similar to those of Saratov/Russia/2017 and Tyumen/Russia/2018, representing clusters 2.1 and 2.4, respectively. However, Kurgan/Russia/2018 has 16 statistically significant recombination events unique to this sequence, contributing to the phylogenetic clustering of Kurgan/Russia/2018 in yet another cluster designed cluster 2.6, based on analysis involving the complete genome sequences.
Collapse
Affiliation(s)
| | | | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | | | - Ilya Chvala
- Federal Center for Animal Health, Vladimir, Russia
| |
Collapse
|
6
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
7
|
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol 2023; 14:1266759. [PMID: 38029115 PMCID: PMC10652407 DOI: 10.3389/fmicb.2023.1266759] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Lumpy skin disease is recognized as a transboundary and emerging disease of cattle, buffaloes and other wild ruminants. Being initially restricted to Africa, and since 1989 the Middle East, the unprecedented recent spread across Eurasia demonstrates how underestimated and neglected this disease is. The initial identification of the causative agent of LSD as a poxvirus called LSD virus, was well as findings on LSDV transmission and epidemiology were pioneered at Onderstepoort, South Africa, from as early as the 1940s by researchers such as Weiss, Haig and Alexander. As more data emerges from an ever-increasing number of epidemiological studies, previously emphasized research gaps are being revisited and discussed. The currently available knowledge is in agreement with the previously described South African research experience that LSDV transmission can occur by multiple routes, including indirect contact, shared water sources and arthropods. The virus population is prone to molecular evolution, generating novel phylogenetically distinct variants resulting from a diverse range of selective pressures, including recombination between field and homologous vaccine strains in cell culture that produce virulent recombinants which pose diagnostic challenges. Host restriction is not limited to livestock, with certain wild ruminants being susceptible, with unknown consequences for the epidemiology of the disease.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD, Australia
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - David B. Wallace
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
8
|
Li Y, Zeng Z, Li K, Rehman MU, Nawaz S, Kulyar MFEA, Hu M, Zhang W, Zhang Z, An M, Hu J, Li J. Detection of Culex tritaeniorhynchus Giles and Novel Recombinant Strain of Lumpy Skin Disease Virus Causes High Mortality in Yaks. Viruses 2023; 15:v15040880. [PMID: 37112860 PMCID: PMC10142747 DOI: 10.3390/v15040880] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Lumpy skin disease virus (LSDV) is capable of causing transboundary diseases characterized by fever, nodules on the skin, mucous membranes, and inner organs. The disease may cause emaciation with the enlargement of lymph nodes and sometimes death. It has had endemic importance in various parts of Asia in recent years, causing substantial economic losses to the cattle industry. The current study reported a suspected LSDV infection (based on signs and symptoms) from a mixed farm of yak and cattle in Sichuan Province, China. The clinical samples were found positive for LSDV using qPCR and ELISA, while LSDV DNA was detected in Culex tritaeniorhynchus Giles. The complete genome sequence of China/LSDV/SiC/2021 was determined by Next-generation sequencing. It was found that China/LSDV/SiC/2021 is highly homologous to the novel vaccine-related recombinant LSDV currently emerging in China and countries surrounding China. Phylogenetic tree analysis revealed that the novel vaccine-associated recombinant LSDV formed a unique dendrograms topology between field and vaccine-associated strains. China/LSDV/SiC/2021 was found to be a novel recombinant strain, with at least 18 recombination events via field viruses identified in the genome sequence. These results suggest that recombinant LSDV can cause high mortality in yaks, and its transmission might be due to the Culex tritaeniorhynchus Giles, which acts as a mechanical vector.
Collapse
|
9
|
Kumar A, Venkatesan G, Kushwaha A, Poulinlu G, Saha T, Ramakrishnan MA, Dhar P, Kumar GS, Singh RK. Genomic characterization of Lumpy Skin Disease virus (LSDV) from India: Circulation of Kenyan-like LSDV strains with unique kelch-like proteins. Acta Trop 2023; 241:106838. [PMID: 36796571 DOI: 10.1016/j.actatropica.2023.106838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
Lumpy skin disease (LSD) is an economically important poxviral disease endemic to Asia, Europe, and Africa. Recently, LSD has spread to naïve countries, including India, China, Bangladesh, Pakistan, Myanmar, Vietnam, and Thailand. Here, we describe the complete genomic characterization of LSDV from India, LSDV-WB/IND/19 isolated from an LSD affected calf in 2019 determined by Illumina next-generation sequencing (NGS). The LSDV-WB/IND/19 has a genome size of 150,969 bp encoding 156 putative ORFs. Phylogenetic analysis based on complete genome sequence suggested that LSDV-WB/IND/19 is closely related to Kenyan LSDV strains with 10-12 variants with non-synonymous changes confined to LSD_019, LSD_049, LSD_089, LSD_094, LSD_096, LSD_140, and LSD_144 genes. In contrast to complete kelch-like proteins in Kenyan LSDV strains, LSDV-WB/IND/19 LSD_019 and LSD_144 genes were found to encode truncated versions (019a, 019b, and 144a, 144b). LSD_019a and LSD_019b proteins of LSDV-WB/IND/19 resemble that of wild-type LSDV strains based on SNPs and the C-terminal part of LSD_019b except for deletion at K229, whereas the LSD_144a and LSD_144b proteins resemble that of Kenyan LSDV strains based on SNPs, however, C-terminal part of LSD_144a resembles that of vaccine-associated LSDV strains due to premature truncation. The NGS findings were confirmed by Sanger sequencing of these genes in Vero cell isolate as well as in the original skin scab along with similar findings in another Indian LSDV from scab specimen. LSD_019 and LSD_144 genes are thought to modulate virulence and host range in capripoxviruses. This study demonstrates the circulation of unique LSDV strains in India and highlights the importance of constant monitoring of the molecular evolution of LSDV and associated factors in the region in light of the emergence of recombinant LSDV strains.
Collapse
Affiliation(s)
- Amit Kumar
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India.
| | - Gnanavel Venkatesan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Anand Kushwaha
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - G Poulinlu
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - Tapabrata Saha
- Block Animal Health Centre, Chhatna, Bankura, West Bengal, India
| | - M A Ramakrishnan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Pronab Dhar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - G Sai Kumar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
10
|
The Characterization and Differentiation of Recombinant Lumpy Skin Disease Isolates Using a Region within ORF134. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent description and characterization of several novel and unique lumpy skin disease virus (LSDV) strains have revealed the inadequacy of current techniques for differentiating between vaccine- and wild-type viruses. The lack of reliable sequencing targets for promptly distinguishing circulating recombinant vaccine-like strains (RVLSs) highlights the need to develop a single and simple differentiation tool. In this study, we analyzed the available LSDV whole-genome sequences and identified a 705-bp region in open reading frame (ORF) LW134. Based on a single run of nucleotide sequencing and phylogenetic analysis, the region with 13 informative single nucleotide polymorphisms (SNPs) was capable of accurately segregating the novel RVLSs into the same five clusters previously confirmed by whole-genome sequencing. In addition, archived RVLSs from Russia were analyzed for further characterization using the newly described single PCR and sequencing assay. The ORF LW134 assay identified one archived RVLS as a novel cluster distinct from the previously described five clusters, while clustering the remaining samples into previously designated lineages, demonstrating the reliability of the assay. The novel PCR and sequencing assays described in this study have great potential for accurately delineating the molecular and evolutionary affiliation of circulating RVLSs.
Collapse
|
11
|
Sprygin A, Mazloum A, van Schalkwyk A, Babiuk S. Capripoxviruses, leporipoxviruses, and orthopoxviruses: Occurrences of recombination. Front Microbiol 2022; 13:978829. [PMID: 36274700 PMCID: PMC9584655 DOI: 10.3389/fmicb.2022.978829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Poxviruses are double-stranded DNA viruses with several members displaying restricted host ranges. They are genetically stable with low nucleotide mutation rates compared to other viruses, due to the poxviral high-fidelity DNA polymerase. Despite the low accumulation of mutations per replication cycle, poxvirus genomes can recombine with each other to generate genetically rearranged viruses through recombination, a process directly associated with replication and the aforementioned DNA polymerase. Orthopoxvirus replication is intimately tethered to high frequencies of homologous recombination between co-infecting viruses, duplicated sequences of the same virus, and plasmid DNA transfected into poxvirus-infected cells. Unfortunately, the effect of these genomic alterations on the cellular context for all poxviruses across the family Poxviridae remains elusive. However, emerging sequence data on currently circulating and archived poxviruses, such as the genera orthopoxviruses and capripoxviruses, display a wide degree of divergence. This genetic variability cannot be explained by clonality or genetic drift alone, but are probably a result of significant genomic alterations, such as homologous recombination, gene loss and gain, or gene duplications as the major selection forces acting on viral progeny. The objective of this review is to cross-sectionally overview the currently available findings on natural and laboratory observations of recombination in orthopoxviruses, capripoxviruses, and leporipoxviruses, as well as the possible mechanisms involved. Overall, the reviewed available evidence allows us to conclude that the current state of knowledge is limited in terms of the relevance of genetic variations across even a genus of poxviruses as well as fundamental features governing and precipitating intrinsic gene flow and recombination events.
Collapse
Affiliation(s)
- Alexander Sprygin
- Federal Center for Animal Health, Vladimir, Russia
- *Correspondence: Alexander Sprygin,
| | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | | | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Krotova A, Byadovskaya O, Shumilova I, van Schalkwyk A, Sprygin A. An in-depth bioinformatic analysis of the novel recombinant lumpy skin disease virus strains: from unique patterns to established lineage. BMC Genomics 2022; 23:396. [PMID: 35610557 PMCID: PMC9131581 DOI: 10.1186/s12864-022-08639-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background Since the first description of lumpy skin disease virus (LSDV) in Africa in the 1920’s, it has brazenly spread beyond Africa into the Middle East, Europe and most recently Asia. In 2017 the first atypical LSDV recombinant strain was reported in Russia, composed of both a live-attenuated Neethling vaccine strain and Kenyan vaccine strain. An increase in LSDV research enabled a public release of numerous full genome sequences of unique recombinant LSDV strains from Kazakhstan, Russia, China and Vietnam. Prior to the recombinant strain first described in China in 2019, every new recombinant strain was genetically unique and each of these recombinants clustered in a monophyletic lineage. In this work, we provide the complete genome sequences of two novel recombinant strains of LSDV from Russia and attempt to gain more insight into genomic composition of all the recombinant strains currently available. This analysis will provide new insight into the global molecular epidemiology of LSDV. Results By sequencing and analyzing two novel recombinant strains Khabarovsk/2020 and Tomsk/2020, this study investigates the differences and similarities of all five the available recombinant LSDV lineages from different countries based on the SNPs inherited from the aforementioned parental strains. A total of seven recombinant strains: LSDV/Russia/Saratov/2017, LSDV/Russia/Udmurtya/2019, LSDV/KZ-Kostanay/Kazakhstan/2018, LSDV/Russia/Tyumen/2019, LSDV/GD01/China/2020 Khabarovsk/2020 and Tomsk/2020 were examined. It was observed that strains isolated prior to 2020 were composed of unique combinations of open reading frames, whilst from 2020 onwards all circulating strains in Russia and South-Eastern Asia belonged to a single lineage radiating out in the region. The first representative of this lineage is LSDV/GD01/China/2020. Interestingly, the other four unique recombinant strains as well as the newly established lineage, exhibit consistent patterns of targeted selection pointing to regions constantly selected for during the recombination-driven processes. Conclusion This study highlights the inexplicable emergence of novel recombinant strains to be unique introductions of sibling viruses, with the most recent recombinant lineage establishing as the dominant strain across the south eastern Asian countries as evidenced by full genome sequence data. Overall, these findings indicate that LSDVs are subjected to accelerated evolutionary changes due to recombination in the face of homologous live attenuated vaccines as well as the slow genetic drift commonly observed in capripoxviruses curculatign in the field with hardly any genetic changes over decades. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08639-w.
Collapse
|