1
|
Cheng J, Wen S, Li K, Zhou Y, Zhu M, Neuhaus HE, Bie Z. The hexose transporters CsHT3 and CsHT16 regulate postphloem transport and fruit development in cucumber. PLANT PHYSIOLOGY 2025; 197:kiae597. [PMID: 39679528 DOI: 10.1093/plphys/kiae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/06/2024] [Indexed: 12/17/2024]
Abstract
Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.
Collapse
Affiliation(s)
- Jintao Cheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Suying Wen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kexin Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yixuan Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Mengtian Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., D-67663 Kaiserslautern, Germany
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
2
|
Qin A, Aluko OO, Liu Z, Yang J, Hu M, Guan L, Sun X. Improved cotton yield: Can we achieve this goal by regulating the coordination of source and sink? FRONTIERS IN PLANT SCIENCE 2023; 14:1136636. [PMID: 37063185 PMCID: PMC10090392 DOI: 10.3389/fpls.2023.1136636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Cotton is one of the major cash crops globally. It is characterized by determinate growth and multiple fruiting, which makes the source-sink contradiction more obvious. Coordination between source and sink is crucial for normal growth, yield, and quality of cotton. Numerous studies reported how the assimilate transport and distribution under varying environmental cues affected crop yields. However, less is known about the functional mechanism underlying the assimilate transport between source and sink, and how their distribution impacts cotton growth. Here, we provided an overview of the assimilate transport and distribution mechanisms , and discussed the regulatory mechanisms involved in source-sink balance in relation to cotton yield. Therefore, this review enriched our knowledge of the regulatory mechanism involved in source-sink relationship for improved cotton yield.
Collapse
|
3
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Dai H, Zhang W, Hua B, Zhu Z, Zhang J, Zhang Z, Miao M. Cucumber STACHYOSE SYNTHASE is regulated by its cis-antisense RNA asCsSTS to balance source-sink carbon partitioning. THE PLANT CELL 2023; 35:435-452. [PMID: 36342214 PMCID: PMC9806573 DOI: 10.1093/plcell/koac317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Photosynthate partitioning between source and sink is a key determinant of crop yield. In contrast to sucrose-transporting plants, cucumber (Cucumis sativus) plants mainly transport stachyose and stachyose synthase (CsSTS) synthesizes stachyose in the vasculature for loading. Therefore, CsSTS is considered a key regulator of carbon partitioning. We found that CsSTS expression and CsSTS enzyme activity were upregulated in the vasculature and downregulated in mesophyll tissues at fruiting. In situ hybridization and tissue enrichment experiments revealed that a cis-natural antisense noncoding transcript of CsSTS, named asCsSTS, is mainly expressed in mesophyll tissues. In vitro overexpression (OE), RNA interference (RNAi), and dual luciferase reporter experiments indicated that CsSTSs are negatively regulated by asCsSTS. Fluorescence in situ hybridization revealed that asCsSTS transcript localized in leaf cytoplasm, indicating that the regulation of CsSTS by asCsSTS is a posttranscriptional process. Further investigation revealed that this regulation occurred by reducing CsSTS transcript stability through a DICER-like protein-mediated pathway. Chemically induced OE and RNAi of asCsSTS led to promotion or inhibition, respectively, of assimilate export from leaves and altered fruit growth rates. Our results suggest that the regulation of CsSTSs between the mesophyll and vasculature reduces sugar storage in mesophyll tissue and promotes assimilate export from the leaf when the plant carries fruit.
Collapse
Affiliation(s)
- Haibo Dai
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Wenyan Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Bing Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Zihui Zhu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Jinji Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| |
Collapse
|
5
|
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Sci Rep 2020; 10:17219. [PMID: 33057137 PMCID: PMC7560729 DOI: 10.1038/s41598-020-73709-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.
Collapse
|
6
|
Meco V, Egea I, Ortíz-Atienza A, Drevensek S, Esch E, Yuste-Lisbona FJ, Barneche F, Vriezen W, Bolarin MC, Lozano R, Flores FB. The Salt Sensitivity Induced by Disruption of Cell Wall-Associated Kinase 1 ( SlWAK1) Tomato Gene Is Linked to Altered Osmotic and Metabolic Homeostasis. Int J Mol Sci 2020; 21:E6308. [PMID: 32878190 PMCID: PMC7503591 DOI: 10.3390/ijms21176308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tomato cell wall-associated kinase 1 (SlWAK1) has only been studied in biotic stress response and hence its function in abiotic stress remains unknown. In a screening under salinity of an insertional mutant collection of tomato (Solanum lycopersicum L.), a mutant exhibiting lower degree of leaf chlorosis than wild type (WT) together with reduced leaf Na+ accumulation was selected. Genetic analysis of the mutation revealed that a single T-DNA insertion in the SlWAK1 gene was responsible of the mutant phenotype. Slwak1 null mutant reduced its shoot growth compared with WT, despite its improved Na+ homeostasis. SlWAK1 disruption affected osmotic homeostasis, as leaf water content was lower in mutant than in WT under salt stress. In addition, Slwak1 altered the source-sink balance under salinity, by increasing sucrose content in roots. Finally, a significant fruit yield reduction was found in Slwak1 vs. WT under long-term salt stress, mainly due to lower fruit weight. Our results show that disruption of SlWAK1 induces a higher sucrose transport from source leaf to sink root, negatively affecting fruit, the main sink at adult stage.
Collapse
Affiliation(s)
- Victoriano Meco
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Stéphanie Drevensek
- Institut de Biologie de l’École Normale Supérieure (IBENS), Paris Sciences et Lettres Research University, F-75005 Paris, France; (S.D.); (F.B.)
| | - Elisabeth Esch
- BASF Vegetable Seeds, Napoleonsweg 152, 6083AB Nunhem, The Netherlands; (E.E.); (W.V.)
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Fredy Barneche
- Institut de Biologie de l’École Normale Supérieure (IBENS), Paris Sciences et Lettres Research University, F-75005 Paris, France; (S.D.); (F.B.)
| | - Wim Vriezen
- BASF Vegetable Seeds, Napoleonsweg 152, 6083AB Nunhem, The Netherlands; (E.E.); (W.V.)
| | - María C. Bolarin
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| |
Collapse
|
7
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Cheng J, Wen S, Bie Z. Overexpression of hexose transporter CsHT3 increases cellulose content in cucumber fruit peduncle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:107-113. [PMID: 31677541 DOI: 10.1016/j.plaphy.2019.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Hexose transporters play many important roles in plant development. However, the role of hexose transporter in secondary cell wall growth has not been reported before. Here, we report that the hexose transporter gene CsHT3 is mainly expressed in cells with secondary cell walls in cucumber. Spatiotemporal expression analysis revealed that the transcript of CsHT3 mainly accumulates in the stem, petiole, tendril, and peduncle, all of which contain high cellulose levels. Immunolocalization results show that CsHT3 is localized at the sclereids in young peduncles, shifts to the phloem fiber cells during peduncle development, and then shifts again to the companion cells when the development of secondary cell walls is almost completed. Carboxyfluoresce unloading experiment indicated that carbohydrate unloading in the phloem follows an apoplastic pathway. Overexpression of CsHT3 in cucumber plant can improve the cellulose content and cell wall thickness of phloem fiber cells in the peduncle. The expression of cellulose synthase genes were increased in the CsHT3 overexpression plants. These results indicated that CsHT3 may play an important role in cellulose synthesis through promoting the expression of cellulose synthase genes.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| | - Suying Wen
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| | - Zhilong Bie
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| |
Collapse
|
9
|
Mayta ML, Arce RC, Zurbriggen MD, Valle EM, Hajirezaei MR, Zanor MI, Carrillo N. Expression of a Chloroplast-Targeted Cyanobacterial Flavodoxin in Tomato Plants Increases Harvest Index by Altering Plant Size and Productivity. FRONTIERS IN PLANT SCIENCE 2019; 10:1432. [PMID: 31798604 PMCID: PMC6865847 DOI: 10.3389/fpls.2019.01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 05/02/2023]
Abstract
Tomato is the most important horticultural crop worldwide. Domestication has led to the selection of highly fruited genotypes, and the harvest index (HI), defined as the ratio of fruit yield over total plant biomass, is usually employed as a biomarker of agronomic value. Improvement of HI might then result from increased fruit production and/or lower vegetative growth. Reduction in vegetative biomass has been accomplished in various plant species by expression of flavodoxin, an electron shuttle flavoprotein that interacts with redox-based pathways of chloroplasts including photosynthesis. However, the effect of this genetic intervention on the development of reproductive organs has not been investigated. We show herein that expression of a plastid-targeted cyanobacterial flavodoxin in tomato resulted in significant reduction of plant size affecting stems, leaves, and fruit. Decreased size correlated with smaller cells and was accompanied by higher pigment contents and photosynthetic activities per leaf cross-section. Flavodoxin accumulated in green fruit but declined with ripening. Significant increases in HI were observed in flavodoxin-expressing lines due to the production of higher fruit number per plant in smaller plants. Therefore, overall yields can be enhanced by increasing plant density in the field. Metabolic profiling of ripe red fruit showed that levels of sugars, organic acids, and amino acids were similar or higher in transgenic plants, indicating that there was no trade-off between increased HI and fruit metabolite contents in flavodoxin-expressing plants. Taken together, our results show that flavodoxin has the potential to improve major agronomic traits when introduced in tomato.
Collapse
Affiliation(s)
- Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rocío C. Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Matias D. Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Estela M. Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | | | - María I. Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- *Correspondence: María I. Zanor, ; Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- *Correspondence: María I. Zanor, ; Néstor Carrillo,
| |
Collapse
|
10
|
Vallarino JG, Pott DM, Cruz-Rus E, Miranda L, Medina-Minguez JJ, Valpuesta V, Fernie AR, Sánchez-Sevilla JF, Osorio S, Amaya I. Identification of quantitative trait loci and candidate genes for primary metabolite content in strawberry fruit. HORTICULTURE RESEARCH 2019; 6:4. [PMID: 30603090 PMCID: PMC6312544 DOI: 10.1038/s41438-018-0077-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 05/09/2023]
Abstract
Improvement of nutritional and organoleptic quality of fruits is a key goal in current strawberry breeding programs. The ratio of sugars to acids is a determinant factor contributing to fruit liking, although different sugars and acids contribute in varying degrees to this complex trait. A segregating F1 population of 95 individuals, previously characterized for several fruit quality characters, was used to map during 2 years quantitative trait loci (QTL) for 50 primary metabolites, l-ascorbic acid (L-AA) and other related traits such as soluble solid content (SSC), titratable acidity (TA), and pH. A total of 133 mQTL were detected above the established thresholds for 44 traits. Only 12.9% of QTL were detected in the 2 years, suggesting a large environmental influence on primary metabolite content. An objective of this study was the identification of key metabolites that were associated to the overall variation in SSC and acidity. As it was observed in previous studies, a number of QTL controlling several metabolites and traits were co-located in homoeology group V (HG V). mQTL controlling a large variance in raffinose, sucrose, succinic acid, and L-AA were detected in approximate the same chromosomal regions of different homoeologous linkage groups belonging to HG V. Candidate genes for selected mQTL are proposed based on their co-localization, on the predicted function, and their differential gene expression among contrasting F1 progeny lines. RNA-seq analysis from progeny lines contrasting in L-AA content detected 826 differentially expressed genes and identified Mannose-6-phosphate isomerase, FaM6PI1, as a candidate gene contributing to natural variation in ascorbic acid in strawberry fruit.
Collapse
Affiliation(s)
- José G. Vallarino
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, University of Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Delphine M. Pott
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, University of Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Eduardo Cruz-Rus
- Genómica y Biotecnología, Centro de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140 Málaga, Spain
| | - Luis Miranda
- Ingeniería y Tecnología Agroalimentaria, Centro Las Torres-Tomejil, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Alcalá del Río, Sevilla, Spain
| | - Juan J. Medina-Minguez
- Ingeniería y Tecnología Agroalimentaria, Centro de Huelva, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Huelva, Spain
| | - Victoriano Valpuesta
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, University of Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - José F. Sánchez-Sevilla
- Genómica y Biotecnología, Centro de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140 Málaga, Spain
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, University of Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Iraida Amaya
- Genómica y Biotecnología, Centro de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), 29140 Málaga, Spain
| |
Collapse
|
11
|
Sonnewald U, Fernie AR. Next-generation strategies for understanding and influencing source-sink relations in crop plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:63-70. [PMID: 29428477 DOI: 10.1016/j.pbi.2018.01.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 05/03/2023]
Abstract
Whether plants are source or sink limited, that is, whether carbon assimilation or rather assimilate usage is ultimately responsible for crop yield, has been the subject of intense debate over several decades. Here we provide a short review of this debate before focusing on the use of transgenic intervention as a means to influence yield by modifying either source or sink function (or both). Given the relatively low success rates of strategies targeting single genes we highlight the success of multi-target transformations. The emergence of whole plant models and the potential impact that these will have in aiding yield improvement strategies are then discussed. We end by providing our perspective for next generation strategies for improving crop plants by means of manipulating their source-sink relations.
Collapse
Affiliation(s)
- Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Kanayama Y. Sugar Metabolism and Fruit Development in the Tomato. THE HORTICULTURE JOURNAL 2017; 86:417-425. [PMID: 0 DOI: 10.2503/hortj.okd-ir01] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
13
|
Rossi M, Bermudez L, Carrari F. Crop yield: challenges from a metabolic perspective. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:79-89. [PMID: 26002068 DOI: 10.1016/j.pbi.2015.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 05/03/2023]
Abstract
Considering the dual use of plants, as bio-factories for foods and feedstock for bio-refining, along with a rising world population, the plant biotechnology field is currently facing a dramatic challenge to develop crops with higher yield. Furthermore, convergent studies predict that global changes in climate will influence crop productivity by modifying most yield-associated traits. Here, we review recent advances in the understanding of plant metabolism directly or indirectly impacting on yield and provide an update of the different pathways proposed as targets for metabolic engineering aiming to optimize source-sink relationships.
Collapse
Affiliation(s)
- Magdalena Rossi
- Departamento de Botânica-IB-USP, Rua do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Luisa Bermudez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), B1712WAA Castelar, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1712WAA Castelar, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), B1712WAA Castelar, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1712WAA Castelar, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Azzi L, Deluche C, Gévaudant F, Frangne N, Delmas F, Hernould M, Chevalier C. Fruit growth-related genes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1075-86. [PMID: 25573859 DOI: 10.1093/jxb/eru527] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and expansion. As fruit growth is mainly driven by cell expansion, cells from the (fleshy) pericarp tissue become highly polyploid according to the endoreduplication process, reaching a DNA content rarely encountered in other plant species (between 2C and 512C). Both cell division and cell expansion are under the control of complex interactions between hormone signalling and carbon partitioning, which establish crucial determinants of the quality of ripe fruit, such as the final size, weight, and shape, and organoleptic and nutritional traits. This review describes the genes known to contribute to fruit growth in tomato.
Collapse
Affiliation(s)
- Lamia Azzi
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Cynthia Deluche
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Frédéric Gévaudant
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Nathalie Frangne
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Frédéric Delmas
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Michel Hernould
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Christian Chevalier
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882, Villenave d'Ornon cedex, France
| |
Collapse
|
15
|
Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, van Poppel PMJA, Heuvelink E, Millenaar FF. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat Commun 2014; 5:4549. [PMID: 25093373 DOI: 10.1038/ncomms5549] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022] Open
Abstract
An important constraint for plant biomass production is the natural day length. Artificial light allows for longer photoperiods, but tomato plants develop a detrimental leaf injury when grown under continuous light--a still poorly understood phenomenon discovered in the 1920s. Here, we report a dominant locus on chromosome 7 of wild tomato species that confers continuous light tolerance. Genetic evidence, RNAseq data, silencing experiments and sequence analysis all point to the type III light harvesting chlorophyll a/b binding protein 13 (CAB-13) gene as a major factor responsible for the tolerance. In Arabidopsis thaliana, this protein is thought to have a regulatory role balancing light harvesting by photosystems I and II. Introgressing the tolerance into modern tomato hybrid lines, results in up to 20% yield increase, showing that limitations for crop productivity, caused by the adaptation of plants to the terrestrial 24-h day/night cycle, can be overcome.
Collapse
Affiliation(s)
- Aaron I Velez-Ramirez
- 1] Horticulture and Product Physiology, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands [2] Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands
| | - Dick Vreugdenhil
- 1] Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands [2] Centre for BioSystems Genomics, PO Box 98, 6700 AB Wageningen, The Netherlands
| | | | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands
| | - Frank F Millenaar
- 1] Monsanto Holland B.V., PO Box 1050, 2660 BB Bergschenhoek, The Netherlands [2]
| |
Collapse
|