1
|
Kraus A, Hess WR. How Small Proteins Adjust the Metabolism of Cyanobacteria Under Stress: The Role of Small Proteins in Cyanobacterial Stress Responses. Bioessays 2025; 47:e202400245. [PMID: 39668401 PMCID: PMC11848123 DOI: 10.1002/bies.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Several recently discovered small proteins of less than 100 amino acids control important, but sometimes surprising, steps in the metabolism of cyanobacteria. There is mounting evidence that a large number of small protein genes have also been overlooked in the genome annotation of many other microorganisms. Although too short for enzymatic activity, their functional characterization has frequently revealed the involvement in processes such as signaling and sensing, interspecies communication, stress responses, metabolism, regulation of transcription and translation, and in the formation of multisubunit protein complexes. Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. They thrive under a wide variety of conditions as long as there is light and must cope with dynamic changes in the environment. To acclimate to these fluctuations, frequently small regulatory proteins become expressed that target key enzymes and metabolic processes. The consequences of their actions are profound and can even impact the surrounding microbiome. This review highlights the diverse functions of recently discovered small proteins that control cyanobacterial metabolism. It also addresses why many of these proteins have been overlooked so far and explores the potential for implementing metabolic engineering strategies to improve the use of cyanobacteria in biotechnological applications.
Collapse
Affiliation(s)
- Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
2
|
Annis MY, Ravenburg CM, van Wijk KJ. Uvr motifs regulate the chloroplast Clp chaperone-protease system. TRENDS IN PLANT SCIENCE 2025; 30:269-282. [PMID: 39448301 DOI: 10.1016/j.tplants.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.
Collapse
Affiliation(s)
- Marissa Y Annis
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Claire M Ravenburg
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Li X, Wei Y, Wang SY, Wang SG, Xia PF. One-for-all gene inactivation via PAM-independent base editing in bacteria. J Biol Chem 2025; 301:108113. [PMID: 39706269 PMCID: PMC11782819 DOI: 10.1016/j.jbc.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Base editing is preferable for bacterial gene inactivation without generating double-strand breaks, requiring homology recombination, or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif. Herein, we report an unconstrained base-editing system to enable the inactivation of any genes of interest in bacteria. We employed a dCas9 derivative, dSpRY, and activation-induced cytidine deaminase to build a protospacer adjacent motif-independent base editor. Then, we programmed the base editor to exclude the START codon of a gene of interest instead of introducing premature STOP codons to obtain a universal approach for gene inactivation, namely XSTART, with an overall efficiency approaching 100%. By using XSTART, we successfully manipulated the amino acid metabolisms in Escherichia coli, generating glutamine, arginine, and aspartate auxotrophic strains. While we observed a high frequency of off-target events as a trade-off for increased efficiency, refining the regulatory system of XSTART to limit expression levels reduced off-target events by over 60% without sacrificing efficiency, aligning our results with previously reported levels. Finally, the effectiveness of XSTART was also demonstrated in probiotic E. coli Nissle 1917 and photoautotrophic cyanobacterium Synechococcus elongatus, illustrating its potential in reprogramming diverse bacteria.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
4
|
Wang SY, Li X, Wang SG, Xia PF. Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metab Eng 2023; 75:91-99. [PMID: 36403709 DOI: 10.1016/j.ymben.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Cyanobacteria can directly convert carbon dioxide (CO2) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination. We achieved precise and efficient genome editing at a single-nucleotide resolution and demonstrated multiplex base editing in the model cyanobacterium Synechococcus elongatus. By using the base-editing tool, we successfully manipulated the glycogen metabolic pathway via the introduction of premature STOP codons in the relevant genes, building engineered strains with elevated potentials to produce chemicals and food from CO2. We present here the first report of base editing in the phylum of cyanobacteria, and a paradigm for applying CRISPR-Cas systems in bacteria. We believe that our work will accelerate the metabolic engineering and synthetic biology of cyanobacteria and drive more innovations to alleviate global climate change.
Collapse
Affiliation(s)
- Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, 266237, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Yoshihara A, Kobayashi K. Photosynthesis and Cell Growth Trigger Degradation of Phycobilisomes during Nitrogen Limitation. PLANT & CELL PHYSIOLOGY 2022; 62:189-199. [PMID: 34718763 DOI: 10.1093/pcp/pcab159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Under nitrogen (N)-limited conditions, the non-N2-fixing cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) actively grows during early stages of starvation by performing photosynthesis but gradually stops the growth and eventually enters dormancy to withstand long-term N limitation. During N limitation, Synechocystis 6803 cells degrade the large light-harvesting antenna complex phycobilisomes (PBSs) presumably to avoid excess light absorption and to reallocate available N to essential functions for growth and survival. These two requirements may be driving forces for PBS degradation during N limitation, but how photosynthesis and cell growth affect PBS degradation remains unclear. To address this question, we examined involvements of photosynthesis and cell growth in PBS degradation during N limitation. Treatment of photosynthesis inhibitors and shading suppressed PBS degradation and caused non-bleaching of cells during N limitation. Limitations of photosynthesis after initial gene responses to N limitation suppressed PBS degradation, implying that photosynthesis affects PBS degradation in a post-translational manner. In addition, limitations of cell growth by inhibition of peptidoglycan and fatty acid biosynthesis, low growth temperature and phosphorous starvation suppressed PBS degradation during N limitation. Because decreased photosynthetic activity led to decreased cell growth, and vice versa, photosynthesis and cell growth would inseparably intertwine each other and affect PBS degradation during N limitation in a complex manner. Our data shed light on the coordination mechanisms among photosynthesis, cell growth and PBS degradation during N limitation.
Collapse
Affiliation(s)
- Akiko Yoshihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| |
Collapse
|
6
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
7
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
8
|
Nadel O, Rozenberg A, Flores-Uribe J, Larom S, Schwarz R, Béjà O. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:848-854. [PMID: 31600852 DOI: 10.1111/1758-2229.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes (PBS) are large water-soluble membrane-associated complexes in cyanobacteria and some chloroplasts that serve as light-harvesting antennae for the photosynthetic apparatus. When deplete of nitrogen or sulphur, cyanobacteria readily degrade their phycobilisomes allowing the cell to replenish these vanishing nutrients. The key regulator in the degradation process is NblA, a small protein (∼6 kDa), which recruits proteases to the PBS. It was discovered previously that not only do cyanobacteria possess nblA genes but also that they are encoded by genomes of some freshwater cyanophages. A recent study, using assemblies from oceanic metagenomes, revealed genomes of a novel uncultured marine cyanophage lineage, representatives of which contain genes coding for the PBS degradation protein. Here, we examined the functionality of nblA-like genes from these marine cyanophages by testing them in a freshwater model cyanobacterial nblA knockout. One of the viral NblA variants could complement the non-bleaching phenotype and restore PBS degradation. Our findings reveal a functional NblA from a novel marine cyanophage lineage. Furthermore, we shed new light on the distribution of nblA genes in cyanobacteria and cyanophages.
Collapse
Affiliation(s)
- Omer Nadel
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
9
|
Montandon C, Friso G, Liao JYR, Choi J, van Wijk KJ. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors. J Proteome Res 2019; 18:2585-2600. [DOI: 10.1021/acs.jproteome.9b00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cyrille Montandon
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Jui-Yun Rei Liao
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Junsik Choi
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Klaas J. van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 2019; 28:2305-2320. [DOI: 10.1111/mec.15074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nadav Oren
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences Rutgers University New Brunswick New Jersey
| | - Isaac Kedem
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Adi Turjeman
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Michal Bronstein
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
11
|
Forchhammer K, Schwarz R. Nitrogen chlorosis in unicellular cyanobacteria – a developmental program for surviving nitrogen deprivation. Environ Microbiol 2018; 21:1173-1184. [DOI: 10.1111/1462-2920.14447] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University Tübingen Auf der Morgenstelle 28, 72076 Tübingen Germany
| | - Rakefet Schwarz
- The Mina & Everard Goodman Faculty of Life SciencesBar‐Ilan University Ramat‐Gan 5290002 Israel
| |
Collapse
|
12
|
Álvarez-Escribano I, Vioque A, Muro-Pastor AM. NsrR1, a Nitrogen Stress-Repressed sRNA, Contributes to the Regulation of nblA in Nostoc sp. PCC 7120. Front Microbiol 2018; 9:2267. [PMID: 30319578 PMCID: PMC6166021 DOI: 10.3389/fmicb.2018.02267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Small regulatory RNAs (sRNAs) are currently considered as major post-transcriptional regulators of gene expression in bacteria. The interplay between sRNAs and transcription factors leads to complex regulatory networks in which both transcription factors and sRNAs may appear as nodes. In cyanobacteria, the responses to nitrogen availability are controlled at the transcriptional level by NtcA, a CRP/FNR family regulator. In this study, we describe an NtcA-regulated sRNA in the cyanobacterium Nostoc sp. PCC 7120, that we have named NsrR1 (nitrogen stress repressed RNA1). We show sequence specific binding of NtcA to the promoter of NsrR1. Prediction of possible mRNA targets regulated by NsrR1 allowed the identification of nblA, encoding a protein adaptor for phycobilisome degradation under several stress conditions, including nitrogen deficiency. We demonstrate specific interaction between NsrR1 and the 5'-UTR of the nblA mRNA, that leads to decreased expression of nblA. Because both NsrR1 and NblA are under transcriptional control of NtcA, this regulatory circuit constitutes a coherent feed-forward loop, involving a transcription factor and an sRNA.
Collapse
Affiliation(s)
- Isidro Álvarez-Escribano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Levi M, Sendersky E, Schwarz R. Decomposition of cyanobacterial light harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:813-821. [PMID: 29575252 DOI: 10.1111/tpj.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Phycobilisomes, the macromolecular light harvesting complexes of cyanobacteria are degraded under nutrient-limiting conditions. This crucial response is required to adjust light excitation to the metabolic status and avoid damage by excess excitation. Phycobilisomes are comprised of phycobiliproteins, apo-proteins that covalently bind bilin chromophores. In the cyanobacterium Synechococcus elongatus, the phycobiliproteins allophycocyanin and phycocyanin comprise the core and the rods of the phycobilisome, respectively. Previously, NblB was identified as an essential component required for phycocyanin degradation under nutrient starvation. This protein is homologous to bilin-lyases, enzymes that catalyze the covalent attachment of bilins to apo-proteins. However, the nblB-inactivated strain is not impaired in phycobiliprotein synthesis, but rather is characterized by aberrant phycocyanin degradation. Here, using a phycocyanin-deficient strain, we demonstrate that NblB is required for degradation of the core pigment, allophycocyanin. Furthermore, we show that the protein NblB is expressed under nutrient sufficient conditions, but during nitrogen starvation its level decreases about two-fold. This finding is in contrast to an additional component essential for degradation, NblA, the expression of which is highly induced under starvation. We further identified NblB residues required for phycocyanin degradation in vivo. Finally, we demonstrate phycocyanin degradation in a cell-free system, thereby providing support for the suggestion that NblB directly mediates pigment degradation by chromophore detachment. The dependence of NblB function on NblA revealed using this system, together with the results indicating presence of NblB under nutrient sufficient conditions, suggests a rapid mechanism for induction of pigment degradation, which requires only the expression of NblA.
Collapse
Affiliation(s)
- Mali Levi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
14
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Harris D, Bar-Zvi S, Lahav A, Goldshmid I, Adir N. The Structural Basis for the Extraordinary Energy-Transfer Capabilities of the Phycobilisome. Subcell Biochem 2018; 87:57-82. [PMID: 29464557 DOI: 10.1007/978-981-10-7757-9_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Light absorption is the initial step in the photosynthetic process. In all species, most of the light is absorbed by dedicated pigment-protein complexes called light harvesting complexes or antenna complexes. In the case of cyanobacteria and red-algae, photosynthetic organisms found in a wide variety of ecological niches, the major antenna is called the Phycobilisome (PBS). The PBS has many unique characteristics that sets it apart from the antenna complexes of other organisms (bacteria, algae and plants). These differences include the type of light absorbing chromophores, the protein environment of the chromophores, the method of assembly and association and the intercellular location with respect to the photosynthetic reaction centers (RCs). Since the final goal of all antenna complexes is the same - controlled absorption and transfer of the energy of the sun to the RCs, the unique structural and chemical differences of the PBS also require unique energy transfer mechanisms and pathways. In this review we will describe in detail the structural facets that lead to a mature PBS, followed by an attempt to understand the energy transfer properties of the PBS as they have been measured experimentally.
Collapse
Affiliation(s)
- Dvir Harris
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shira Bar-Zvi
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avital Lahav
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itay Goldshmid
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Adir
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
Joshi KK, Sutherland M, Chien P. Cargo engagement protects protease adaptors from degradation in a substrate-specific manner. J Biol Chem 2017; 292:10973-10982. [PMID: 28507098 DOI: 10.1074/jbc.m117.786392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Protein degradation in bacteria is a highly controlled process involving proteolytic adaptors that regulate protein degradation during cell cycle progression or during stress responses. Many adaptors work as scaffolds that selectively bind cargo and tether substrates to their cognate proteases to promote substrate destruction, whereas others primarily activate the target protease. Because adaptors must bind their cognate protease, all adaptors run the risk of being recognized by the protease as substrates themselves, a process that could limit their effectiveness. Here we use purified proteins in a reconstituted system and in vivo studies to show that adaptors of the ClpXP protease are readily degraded but that cargo binding inhibits this degradation. We found that this principle extends across several adaptor systems, including the hierarchical adaptors that drive the Caulobacter bacterial cell cycle and the quality control adaptor SspB. We also found that the ability of a cargo to protect its adaptor is adaptor substrate-specific, as adaptors with artificial degradation tags were not protected even though cargo binding is unaffected. Our work points to an optimization of inherent adaptor degradation and cargo binding that ensures that robust adaptor activity is maintained when high amounts of substrate must be delivered and that adaptors can be eliminated when their tasks have been completed.
Collapse
Affiliation(s)
- Kamal Kishore Joshi
- From the Department of Biochemistry and Molecular Biology and.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | | | - Peter Chien
- From the Department of Biochemistry and Molecular Biology and .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
17
|
Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation. PHOTOSYNTHESIS RESEARCH 2017; 132:95-106. [PMID: 28078551 PMCID: PMC5576716 DOI: 10.1007/s11120-016-0334-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Phycobilisome (PBS) complexes are massive light-harvesting apparati in cyanobacteria that capture and funnel light energy to the photosystem. PBS complexes are dynamically degraded during nutrient deprivation, which causes severe chlorosis, and resynthesized during nutrient repletion. PBS degradation occurs rapidly after nutrient step down, and is specifically triggered by non-bleaching protein A (NblA), a small proteolysis adaptor that facilitates interactions between a Clp chaperone and phycobiliproteins. Little is known about the mode of action of NblA during PBS degradation. In this study, we used chemical cross-linking coupled with LC-MS/MS to investigate the interactions between NblA and phycobiliproteins. An isotopically coded BS3 cross-linker captured a protein interaction between NblA and β-phycocyanin (PC). LC-MS/MS analysis identified the amino acid residues participating in the binding reaction, and demonstrated that K52 in NblA is cross-linked to T2 in β-PC. These results were modeled onto the existing crystal structures of NblA and PC by protein docking simulations. Our data indicate that the C-terminus of NblA fits in an open groove of β-PC, a region located inside the central hollow cavity of a PC rod. NblA may mediate PBS degradation by disrupting the structural integrity of the PC rod from within the rod. In addition, M1-K44 and M1-K52 cross-links between the N-terminus of NblA and the C-terminus of NblA are consistent with the NblA crystal structure, confirming that the purified NblA is structurally and biologically relevant. These findings provide direct evidence that NblA physically interacts with β-PC.
Collapse
Affiliation(s)
- Amelia Y Nguyen
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- US Environmental Protection Agency, 1200 Pennsylvania Ave, NW (MC-7403M), Washington, DC, 20460, USA
| | - William P Bricker
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| |
Collapse
|
18
|
Vajravel S, Kovács L, Kis M, Rehman AU, Vass I, Gombos Z, Toth TN. β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2016; 130:403-415. [PMID: 27165097 DOI: 10.1007/s11120-016-0273-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
We investigated the relation between the carotenoid composition and the structure of phycobilisome (PBS) antenna of cyanobacterium Synechocystis sp. PCC 6803. PBS is a large soluble protein complex enhances the light harvesting efficiency of the cells. It is composed of a central allophycocyanin core and radial phycocyanin rods, but it does not contain carotenoids. However, the absence or low level of carotenoids were previously shown to lead the co-existence of unconnected rod units and assembled PBS with shorter peripheral rods. Here we show that the lack of β-carotene, but not of xanthophylls or the distortion of photosystem structure, evoked unconnected rods. Thus, these essential β-carotene molecules are not bound by Photosystem I or Photosystem II. Our results do not show correlation between the reactive oxygen species (ROS) and PBS distortion despite the higher singlet oxygen producing capacity and light sensitivity of the mutant cells. Reduced cellular level of those linker proteins attaching the rod units together was also observed, but the direct damage of the linkers by ROS are not supported by our data. Enzymatic PBS proteolysis induced by nitrogen starvation in carotenoid mutant cells revealed a retarded degradation of the unconnected rod units.
Collapse
Affiliation(s)
- Sindhujaa Vajravel
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Mihály Kis
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Zoltan Gombos
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Tunde N Toth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary.
| |
Collapse
|
19
|
Abstract
Protein degradation is essential for all living things. Bacteria use energy-dependent proteases to control protein destruction in a highly specific manner. Recognition of substrates is determined by the inherent specificity of the proteases and through adaptor proteins that alter the spectrum of substrates. In the α-proteobacterium Caulobacter crescentus, regulated protein degradation is required for stress responses, developmental transitions, and cell cycle progression. In this review, we describe recent progress in our understanding of the regulated and stress-responsive protein degradation pathways in Caulobacter. We discuss how organization of highly specific adaptors into functional hierarchies drives destruction of proteins during the bacterial cell cycle. Because all cells must balance the need for degradation of many true substrates with the toxic consequences of nonspecific protein destruction, principles found in one system likely generalize to others.
Collapse
Affiliation(s)
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
20
|
Wilde A, Hihara Y. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:296-308. [PMID: 26549130 DOI: 10.1016/j.bbabio.2015.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/02/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Annegret Wilde
- University of Freiburg, Institute of Biology III, Schänzlestr. 1, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
21
|
Sendersky E, Kozer N, Levi M, Moizik M, Garini Y, Shav-Tal Y, Schwarz R. The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:845-852. [PMID: 26173720 DOI: 10.1111/tpj.12931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterial light-harvesting complex, the phycobilisome, is degraded under nutrient limitation, allowing the cell to adjust light absorbance to its metabolic capacity. This large light-harvesting antenna comprises a core complex of the pigment allophycocyanin, and rod-shaped pigment assemblies emanating from the core. NblA, a low-molecular-weight protein, is essential for degradation of the phycobilisome. NblA mutants exhibit high absorbance of rod pigments under conditions that generally elicit phycobilisome degradation, implicating NblA in degradation of these pigments. However, the vast abundance of rod pigments and the substantial overlap between the absorbance spectra of rod and core pigments has made it difficult to directly associate NblA with proteolysis of the phycobilisome core. Furthermore, lack of allophycocyanin degradation in an NblA mutant may reflect a requirement for rod degradation preceding core degradation, and does not prove direct involvement of NblA in proteolysis of the core pigment. Therefore, in this study, we used a mutant lacking phycocyanin, the rod pigment of Synechococcus elongatusPCC7942, to examine whether NblA is required for allophycocyanin degradation. We demonstrate that NblA is essential for degradation of the core complex of the phycobilisome. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for the interaction of NblA with allophycocyanin, and indicated that NblA interacts with allophycocyanin complexes that are associated with the photosynthetic membranes. Based on these data, as well as previous observations indicating interaction of NblA with phycobilisomes attached to the photosynthetic membranes, we suggest a model for sequential phycobilisome disassembly by NblA.
Collapse
Affiliation(s)
- Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Mali Levi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Moizik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yuval Garini
- Physics Department, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|