1
|
de Almeida BM, Clarindo WR. A multidisciplinary and integrative review of the structural genome and epigenome of Capsicum L. species. PLANTA 2025; 261:82. [PMID: 40057910 DOI: 10.1007/s00425-025-04653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum "omics". In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum "omics" diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for "omics", ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences.
Collapse
Affiliation(s)
- Breno Machado de Almeida
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
2
|
Schmidt N, Maiwald S, Mann L, Weber B, Seibt KM, Breitenbach S, Liedtke S, Menzel G, Weisshaar B, Holtgräwe D, Heitkam T. BeetRepeats: reference sequences for genome and polymorphism annotation in sugar beet and wild relatives. BMC Res Notes 2024; 17:351. [PMID: 39605057 PMCID: PMC11603912 DOI: 10.1186/s13104-024-06993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Despite the advances in genomics, repetitive DNAs (repeats) are still difficult to sequence, assemble, and identify. This is due to their high abundance and diversity, with many repeat families being unique to the organisms in which they were described. In sugar beet, repeats make up a significant portion of the genome (at least 53%), with many repeats being restricted to the beet genera, Beta and Patellifolia. Over the course of over 30 years and many repeat-based studies, over a thousand reference repeat sequences for beet genomes have been identified and many experimentally characterized (e.g. physically located on the chromosomes). Here, we present the collection of these reference repeat sequences for beets. DATA DESCRIPTION The BeetRepeats_v1.0 resource is a comprehensive compilation of all characterized repeat families, including satellite DNAs, ribosomal DNAs, transposable elements and endogenous viruses. The genomes covered are those of sugar beet and closely related wild beets (genera Beta and Patellifolia) as well as Chenopodium quinoa and Spinacia oleracea (all belonging to the Amaranthaceae). The reference sequences are in fasta format and comprise well-characterized repeats from both repeat categories (dispersed/mobile as well as tandemly arranged). The database is suitable for the RepeatMasker and RepeatExplorer2 pipelines and can be used directly for any repeat annotation and repeat polymorphism detection purposes.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Bernd Weisshaar
- Fakulty of Biology & CeBiTec, Universität Bielefeld, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Fakulty of Biology & CeBiTec, Universität Bielefeld, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany.
- Institute of Biology I, RWTH Aachen University, 52056, Aachen, Germany.
| |
Collapse
|
3
|
Xin H, Wang Y, Zhang W, Bao Y, Neumann P, Ning Y, Zhang T, Wu Y, Jiang N, Jiang J, Xi M. Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes. PLANT PHYSIOLOGY 2024; 195:2787-2798. [PMID: 38652695 PMCID: PMC11288735 DOI: 10.1093/plphys/kiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Collapse
Affiliation(s)
- Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiduo Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 37005, Czech Republic
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Schmidt N, Sielemann K, Breitenbach S, Fuchs J, Pucker B, Weisshaar B, Holtgräwe D, Heitkam T. Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:171-190. [PMID: 38128038 DOI: 10.1111/tpj.16599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Graz, Austria
| |
Collapse
|
5
|
Maiwald S, Mann L, Garcia S, Heitkam T. Evolving Together: Cassandra Retrotransposons Gradually Mirror Promoter Mutations of the 5S rRNA Genes. Mol Biol Evol 2024; 41:msae010. [PMID: 38262464 PMCID: PMC10853983 DOI: 10.1093/molbev/msae010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to the 5S preservation we observe the occurrence of 5S-related nonautonomous retrotransposons, so-called Cassandras. Cassandras harbor highly conserved 5S rDNA-related sequences within their long terminal repeats, advantageously providing them with the 5S internal promoter. However, the dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence information and structural arrangement are still unclear, especially: (1) do we observe repeated or gradual domestication of the highly conserved 5S promoter by Cassandras and (2) do changes in 5S organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs. To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant genome organization, giving new insights into the interplay of ribosomal genes and transposable elements.
Collapse
Affiliation(s)
- Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC-MCNB), 08038 Barcelona, Catalonia, Spain
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, 8010 Graz, Austria
| |
Collapse
|
6
|
Hartig N, Seibt KM, Heitkam T. How to start a LINE: 5' switching rejuvenates LINE retrotransposons in tobacco and related Nicotiana species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36965091 DOI: 10.1111/tpj.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
By contrast to their conserved mammalian counterparts, plant long interspersed nuclear elements (LINEs) are highly variable, splitting into many low-copy families. Curiously, LINE families from the retrotransposable element (RTE) clade retain a stronger sequence conservation and hence reach higher copy numbers. The cause of this RTE-typical property is not yet understood, but would help clarify why some transposable elements are removed quickly, whereas others persist in plant genomes. Here, we bring forward a detailed study of RTE LINE structure, diversity and evolution in plants. For this, we argue that the nightshade family is the ideal taxon to follow the evolutionary trajectories of RTE LINEs, given their high abundance, recent activity and partnership to non-autonomous elements. Using bioinformatic, cytogenetic and molecular approaches, we detect 4029 full-length RTE LINEs across the Solanaceae. We finely characterize and manually curate a core group of 458 full-length LINEs in allotetraploid tobacco, show an integration event after polyploidization and trace hybridization by RTE LINE composition of parental genomes. Finally, we reveal the role of the untranslated regions (UTRs) as causes for the unique RTE LINE amplification and evolution pattern in plants. On the one hand, we detected a highly conserved motif at the 3' UTR, suggesting strong selective constraints acting on the RTE terminus. On the other hand, we observed successive rounds of 5' UTR cycling, constantly rejuvenating the promoter sequences. This interplay between exchangeable promoters and conserved LINE bodies and 3' UTR likely allows RTE LINEs to persist and thrive in plant genomes.
Collapse
Affiliation(s)
- Nora Hartig
- Faculty of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Tony Heitkam
- Faculty of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
7
|
Specificities and Dynamics of Transposable Elements in Land Plants. BIOLOGY 2022; 11:biology11040488. [PMID: 35453688 PMCID: PMC9033089 DOI: 10.3390/biology11040488] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Transposable elements are dynamic components of plant genomes, and display a high diversity of lineages and distribution as the result of evolutionary driving forces and overlapping mechanisms of genetic and epigenetic regulation. They are now regarded as main contributors for genome evolution and function, and important regulators of endogenous gene expression. In this review, we survey recent progress and current challenges in the identification and classification of transposon lineages in complex plant genomes, highlighting the molecular specificities that may explain the expansion and diversification of mobile genetic elements in land plants. Abstract Transposable elements (TEs) are important components of most plant genomes. These mobile repetitive sequences are highly diverse in terms of abundance, structure, transposition mechanisms, activity and insertion specificities across plant species. This review will survey the different mechanisms that may explain the variability of TE patterns in land plants, highlighting the tight connection between TE dynamics and host genome specificities, and their co-evolution to face and adapt to a changing environment. We present the current TE classification in land plants, and describe the different levels of genetic and epigenetic controls originating from the plant, the TE itself, or external environmental factors. Such overlapping mechanisms of TE regulation might be responsible for the high diversity and dynamics of plant TEs observed in nature.
Collapse
|
8
|
Sielemann K, Pucker B, Schmidt N, Viehöver P, Weisshaar B, Heitkam T, Holtgräwe D. Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives. BMC Genomics 2022; 23:113. [PMID: 35139817 PMCID: PMC8830136 DOI: 10.1186/s12864-022-08336-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background As the major source of sugar in moderate climates, sugar-producing beets (Beta vulgaris subsp. vulgaris) have a high economic value. However, the low genetic diversity within cultivated beets requires introduction of new traits, for example to increase their tolerance and resistance attributes – traits that often reside in the crop wild relatives. For this, genetic information of wild beet relatives and their phylogenetic placements to each other are crucial. To answer this need, we sequenced and assembled the complete plastome sequences from a broad species spectrum across the beet genera Beta and Patellifolia, both embedded in the Betoideae (order Caryophyllales). This pan-plastome dataset was then used to determine the wild beet phylogeny in high-resolution. Results We sequenced the plastomes of 18 closely related accessions representing 11 species of the Betoideae subfamily and provided high-quality plastome assemblies which represent an important resource for further studies of beet wild relatives and the diverse plant order Caryophyllales. Their assembly sizes range from 149,723 bp (Beta vulgaris subsp. vulgaris) to 152,816 bp (Beta nana), with most variability in the intergenic sequences. Combining plastome-derived phylogenies with read-based treatments based on mitochondrial information, we were able to suggest a unified and highly confident phylogenetic placement of the investigated Betoideae species. Our results show that the genus Beta can be divided into the two clearly separated sections Beta and Corollinae. Our analysis confirms the affiliation of B. nana with the other Corollinae species, and we argue against a separate placement in the Nanae section. Within the Patellifolia genus, the two diploid species Patellifolia procumbens and Patellifolia webbiana are, regarding the plastome sequences, genetically more similar to each other than to the tetraploid Patellifolia patellaris. Nevertheless, all three Patellifolia species are clearly separated. Conclusion In conclusion, our wild beet plastome assemblies represent a new resource to understand the molecular base of the beet germplasm. Despite large differences on the phenotypic level, our pan-plastome dataset is highly conserved. For the first time in beets, our whole plastome sequences overcome the low sequence variation in individual genes and provide the molecular backbone for highly resolved beet phylogenomics. Hence, our plastome sequencing strategy can also guide genomic approaches to unravel other closely related taxa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08336-8.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
| | - Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
9
|
Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). ANNALS OF BOTANY 2021; 128:281-299. [PMID: 33729490 PMCID: PMC8389469 DOI: 10.1093/aob/mcab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, PR China
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Genome of the world's smallest flowering plant, Wolffia australiana, helps explain its specialized physiology and unique morphology. Commun Biol 2021; 4:900. [PMID: 34294872 PMCID: PMC8298427 DOI: 10.1038/s42003-021-02422-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Watermeal, Wolffia australiana, is the smallest known flowering monocot and is rich in protein. Despite its great potential as a biotech crop, basic research on Wolffia is in its infancy. Here, we generated the reference genome of a species of watermeal, W. australiana, and identified the genome-wide features that may contribute to its atypical anatomy and physiology, including the absence of roots, adaxial stomata development, and anaerobic life as a turion. In addition, we found evidence of extensive genome rearrangements that may underpin the specialized aquatic lifestyle of watermeal. Analysis of the gene inventory of this intriguing species helps explain the distinct characteristics of W. australiana and its unique evolutionary trajectory. Halim Park and Jin Hwa Park et al. report the nuclear genome sequence of the duckweed Wolffia australiana, the smallest known flowering plant. The genome assembly represents an improvement over a recently published genome and highlights genome rearrangements that may be linked to its specialized aquatic adaptations.
Collapse
|
11
|
Choi IS, Wojciechowski MF, Ruhlman TA, Jansen RK. In and out: Evolution of viral sequences in the mitochondrial genomes of legumes (Fabaceae). Mol Phylogenet Evol 2021; 163:107236. [PMID: 34147655 DOI: 10.1016/j.ympev.2021.107236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Plant specific mitoviruses in the 'genus' Mitovirus (Narnaviridae) and their integrated sequences (non-retroviral endogenous RNA viral elements or NERVEs) have been recently identified in various plant lineages. However, the sparse phylogenetic coverage of complete plant mitochondrial genome (mitogenome) sequences and the non-conserved nature of mitochondrial intergenic regions have hindered comparative studies on mitovirus NERVEs in plants. In this study, 10 new mitogenomes were sequenced from legumes (Fabaceae). Based on comparative genomic analysis of 27 total mitogenomes, we identified mitovirus NERVEs and transposable elements across the family. All legume mitogenomes included NERVEs and total NERVE length varied from ca. 2 kb in the papilionoid Trifolium to 35 kb in the mimosoid Acacia. Most of the NERVE integration sites were in highly variable intergenic regions, however, some were positioned in six cis-spliced mitochondrial introns. In the Acacia mitogenome, there were L1-like transposon sequences including an almost full-length copy with target site duplications (TSDs). The integration sites of NERVEs in four introns showed evidence of L1-like retrotransposition events. Phylogenetic analysis revealed that there were multiple instances of precise deletion of NERVEs between TSDs. This study provides clear evidence that a L1-like retrotransposition mechanism has a long history of contributing to the integration of viral RNA into plant mitogenomes while microhomology-mediated deletion can restore the integration site.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
12
|
Vondrak T, Oliveira L, Novák P, Koblížková A, Neumann P, Macas J. Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads. Comput Struct Biotechnol J 2021; 19:2179-2189. [PMID: 33995911 PMCID: PMC8091179 DOI: 10.1016/j.csbj.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Repeat-rich regions of higher plant genomes are usually associated with constitutive heterochromatin, a specific type of chromatin that forms tightly packed nuclear chromocenters and chromosome bands. There is a large body of cytogenetic evidence that these chromosome regions are often composed of tandemly organized satellite DNA. However, comparatively little is known about the sequence arrangement within heterochromatic regions, which are difficult to assemble due to their repeated nature. Here, we explore long-range sequence organization of heterochromatin regions containing the major satellite repeat CUS-TR24 in the holocentric plant Cuscuta europaea. Using a combination of ultra-long read sequencing with assembly-free sequence analysis, we reveal the complex structure of these loci, which are composed of short arrays of CUS-TR24 interrupted frequently by emerging simple sequence repeats and targeted insertions of a specific lineage of LINE retrotransposons. These data suggest that the organization of satellite repeats constituting heterochromatic chromosome bands can be more complex than previously envisioned, and demonstrate that heterochromatin organization can be efficiently investigated without the need for genome assembly.
Collapse
Affiliation(s)
- Tihana Vondrak
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| |
Collapse
|
13
|
Mascagni F, Usai G, Cavallini A, Porceddu A. Structural characterization and duplication modes of pseudogenes in plants. Sci Rep 2021; 11:5292. [PMID: 33674668 PMCID: PMC7935947 DOI: 10.1038/s41598-021-84778-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
We identified and characterized the pseudogene complements of five plant species: four dicots (Arabidopsis thaliana, Vitis vinifera, Populus trichocarpa and Phaseolus vulgaris) and one monocot (Oryza sativa). Retroposition was considered of modest importance for pseudogene formation in all investigated species except V. vinifera, which showed an unusually high number of retro-pseudogenes in non coding genic regions. By using a pipeline for the classification of sequence duplicates in plant genomes, we compared the relative importance of whole genome, tandem, proximal, transposed and dispersed duplication modes in the pseudo and functional gene complements. Pseudogenes showed higher tendencies than functional genes to genomic dispersion. Dispersed pseudogenes were prevalently fragmented and showed high sequence divergence at flanking regions. On the contrary, those deriving from whole genome duplication were proportionally less than expected based on observations on functional loci and showed higher levels of flanking sequence conservation than dispersed pseudogenes. Pseudogenes deriving from tandem and proximal duplications were in excess compared to functional loci, probably reflecting the high evolutionary rate associated with these duplication modes in plant genomes. These data are compatible with high rates of sequence turnover at neutral sites and double strand break repairs mediated duplication mechanisms.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agricultural, Food, and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli studi di Sassari, Via Enrico de Nicola 1, 07100, Sassari, Italy.
| |
Collapse
|
14
|
Li N, Li X, Zhou J, Yu L, Li S, Zhang Y, Qin R, Gao W, Deng C. Genome-Wide Analysis of Transposable Elements and Satellite DNAs in Spinacia Species to Shed Light on Their Roles in Sex Chromosome Evolution. FRONTIERS IN PLANT SCIENCE 2021; 11:575462. [PMID: 33519837 PMCID: PMC7840529 DOI: 10.3389/fpls.2020.575462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/17/2020] [Indexed: 05/02/2023]
Abstract
Sex chromosome evolution has mostly been studied in species with heteromorphic sex chromosomes. The Spinacia genus serves as an ideal model for investigating evolutionary mechanisms underlying the transition from homomorphic to heteromorphic sex chromosomes. Among evolutionary factors, repetitive sequences play multiple roles in sex chromosome evolution while their forces have not been fully explored in Spinacia species. Here, we identified major repetitive sequence classes in male and female genomes of Spinacia species and their ancestral relative sugar beet to elucidate the evolutionary processes of sex chromosome evolution using next-generation sequencing (NGS) data. Comparative analysis revealed that the repeat elements of Spinacia species are considerably higher than of sugar beet, especially the Ty3/Gypsy and Ty1/Copia retrotransposons. The long terminal repeat retroelements (LTR) Angela, Athila, and Ogre may be accounted for the higher proportion of repeats in the spinach genome. Comparison of the repeats proportion between female and male genomes of three Spinacia species indicated the different representation in Spinacia tetrandra samples but not in the S. oleracea or S. turkestanica samples. From these results, we speculated that emergence of repetitive DNA sequences may correlate the formation of sex chromosome and the transition from homomorphic sex chromosomes to heteromorphic sex chromosomes as heteromorphic sex chromosomes exclusively existed in Spinacia tetrandra. Three novel sugar beet-specific satellites were identified and confirmed by fluorescence in situ hybridization (FISH); six out of eight new spinach-specific satellites were mapped to the short arm of sex chromosomes. A total of 141 copies of SolSat01-171-s were found in the sex determination region (SDR). Thus, the accumulation of satellite DNA on the short arm of chromosome 1 may be involved in the sex chromosome evolution in Spinacia species. Our study provides a fundamental resource for understanding repeat sequences in Spinacia species and their roles in sex chromosome evolution.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaoyue Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li’ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ruiyun Qin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
15
|
Maiwald S, Weber B, Seibt KM, Schmidt T, Heitkam T. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. ANNALS OF BOTANY 2021; 127:91-109. [PMID: 33009553 PMCID: PMC7750724 DOI: 10.1093/aob/mcaa176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Plant genomes contain many retrotransposons and their derivatives, which are subject to rapid sequence turnover. As non-autonomous retrotransposons do not encode any proteins, they experience reduced selective constraints leading to their diversification into multiple families, usually limited to a few closely related species. In contrast, the non-coding Cassandra terminal repeat retrotransposons in miniature (TRIMs) are widespread in many plants. Their hallmark is a conserved 5S rDNA-derived promoter in their long terminal repeats (LTRs). As sugar beet (Beta vulgaris) has a well-described LTR retrotransposon landscape, we aim to characterize TRIMs in beet and related genomes. METHODS We identified Cassandra retrotransposons in the sugar beet reference genome and characterized their structural relationships. Genomic organization, chromosomal localization, and distribution of Cassandra-TRIMs across the Amaranthaceae were verified by Southern and fluorescent in situ hybridization. KEY RESULTS All 638 Cassandra sequences in the sugar beet genome contain conserved LTRs and thus constitute a single family. Nevertheless, variable internal regions required a subdivision into two Cassandra subfamilies within B. vulgaris. The related Chenopodium quinoa harbours a third subfamily. These subfamilies vary in their distribution within Amaranthaceae genomes, their insertion times and the degree of silencing by small RNAs. Cassandra retrotransposons gave rise to many structural variants, such as solo LTRs or tandemly arranged Cassandra retrotransposons. These Cassandra derivatives point to an interplay of template switch and recombination processes - mechanisms that likely caused Cassandra's subfamily formation and diversification. CONCLUSIONS We traced the evolution of Cassandra in the Amaranthaceae and detected a considerable variability within the short internal regions, whereas the LTRs are strongly conserved in sequence and length. Presumably these hallmarks make Cassandra a prime target for unequal recombination, resulting in the observed structural diversity, an example of the impact of LTR-mediated evolutionary mechanisms on the host genome.
Collapse
Affiliation(s)
- Sophie Maiwald
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Zavallo D, Crescente JM, Gantuz M, Leone M, Vanzetti LS, Masuelli RW, Asurmendi S. Genomic re-assessment of the transposable element landscape of the potato genome. PLANT CELL REPORTS 2020; 39:1161-1174. [PMID: 32435866 DOI: 10.1007/s00299-020-02554-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 05/14/2023]
Abstract
We provide a comprehensive and reliable potato TE landscape, based on a wide variety of identification tools and integrative approaches, producing clear and ready-to-use outputs for the scientific community. Transposable elements (TEs) are DNA sequences with the ability to autoreplicate and move throughout the host genome. TEs are major drivers in stress response and genome evolution. Given their significance, the development of clear and efficient TE annotation pipelines has become essential for many species. The latest de novo TE discovery tools, along with available TEs from Repbase and sRNA-seq data, allowed us to perform a reliable potato TEs detection, classification and annotation through an open-source and freely available pipeline ( https://github.com/DiegoZavallo/TE_Discovery ). Using a variety of tools, approaches and rules, we were able to provide a clearly annotated of characterized TEs landscape. Additionally, we described the distribution of the different types of TEs across the genome, where LTRs and MITEs present a clear clustering pattern in pericentromeric and subtelomeric/telomeric regions respectively. Finally, we analyzed the insertion age and distribution of LTR retrotransposon families which display a distinct pattern between the two major superfamilies. While older Gypsy elements concentrated around heterochromatic regions, younger Copia elements located predominantly on euchromatic regions. Overall, we delivered not only a reliable, ready-to-use potato TE annotation files, but also all the necessary steps to perform de novo detection for other species.
Collapse
Affiliation(s)
- Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina.
| | - Juan Manuel Crescente
- Grupo Biotecnologia y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 Km 3, 2580, Marcos Juárez, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Magdalena Gantuz
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina
- Agencia Nacional de Promocion Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Leonardo Sebastian Vanzetti
- Grupo Biotecnologia y Recursos Genéticos, EEA INTA Marcos Juárez, Ruta 12 Km 3, 2580, Marcos Juárez, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ricardo Williams Masuelli
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias (FCA), CONICET-UNCuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina.
| |
Collapse
|
17
|
Seibt KM, Schmidt T, Heitkam T. The conserved 3' Angio-domain defines a superfamily of short interspersed nuclear elements (SINEs) in higher plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:681-699. [PMID: 31610059 DOI: 10.1111/tpj.14567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Repetitive sequences are ubiquitous components of eukaryotic genomes affecting genome size and evolution as well as gene regulation. Among them, short interspersed nuclear elements (SINEs) are non-coding retrotransposons usually shorter than 1000 bp. They contain only few short conserved structural motifs, in particular an internal promoter derived from cellular RNAs and a mostly AT-rich 3' tail, whereas the remaining regions are highly variable. SINEs emerge and vanish during evolution, and often diversify into numerous families and subfamilies that are usually specific for only a limited number of species. In contrast, at the 3' end of multiple plant SINEs we detected the highly conserved 'Angio-domain'. This 37 bp segment defines the Angio-SINE superfamily, which encompasses 24 plant SINE families widely distributed across 13 orders within the plant kingdom. We retrieved 28 433 full-length Angio-SINE copies from genome assemblies of 46 plant species, frequently located in genes. Compensatory mutations in and adjacent to the Angio-domain imply selective restraints maintaining its RNA structure. Angio-SINE families share segmental sequence similarities, indicating a modular evolution with strong Angio-domain preservation. We suggest that the conserved domain contributes to the evolutionary success of Angio-SINEs through either structural interactions between SINE RNA and proteins increasing their transpositional efficiency, or by enhancing their accumulation in genes.
Collapse
Affiliation(s)
- Kathrin M Seibt
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, 01217, Germany
| | - Thomas Schmidt
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, 01217, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, 01217, Germany
| |
Collapse
|
18
|
Sookdeo A, Hepp CM, Boissinot S. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mob DNA 2018; 9:12. [PMID: 29610583 PMCID: PMC5872511 DOI: 10.1186/s13100-018-0117-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. Results We found that multiple L1 lineages, carrying different 5’UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. Conclusions The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s13100-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akash Sookdeo
- 1Department of Biology, New York University, New York, NY USA
| | - Crystal M Hepp
- 2School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
| | - Stéphane Boissinot
- 3New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
19
|
Khazina E, Weichenrieder O. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 2018; 7:34960. [PMID: 29565245 PMCID: PMC5940361 DOI: 10.7554/elife.34960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. Almost half of the human genome consists of DNA strings that have been copied and pasted from one part of the genome to another many thousands of times. These strings of DNA are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease and cancer, but they can also drive evolution. Presently, only one type of mobile element, called LINE-1, is active in the human genome and able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are required for LINE-1 mobility. Different versions of L1ORF1p are found in different animals. Part of the protein is the same across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is essential for LINE-1 mobility. Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-stable structure that can partially open up, indicating how trimers could form larger assemblies of L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs to be positively charged – a requirement that warrants further exploration. The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1 mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process at various points and to dissect such steps in great detail. Understanding how to control LINE-1 mobility could help to improve stem cell therapies and reproduction assistance techniques, due to the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and newly formed embryos.
Collapse
Affiliation(s)
- Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
20
|
Nouroz F, Noreen S, Khan MF, Ahmed S, Heslop-Harrison JSP. Identification and characterization of mobile genetic elements LINEs from Brassica genome. Gene 2017; 627:94-105. [PMID: 28606835 DOI: 10.1016/j.gene.2017.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars.
Collapse
Affiliation(s)
- Faisal Nouroz
- Department of Biology, University of Leicester, UK; Department of Botany, Hazara University Mansehra, Pakistan.
| | | | | | - Shehzad Ahmed
- Department of Microbiology, Hazara University Mansehra, Pakistan
| | | |
Collapse
|
21
|
Zakrzewski F, Schmidt M, Van Lijsebettens M, Schmidt T. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1156-1175. [PMID: 28257158 DOI: 10.1111/tpj.13526] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/13/2023]
Abstract
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.
Collapse
Affiliation(s)
- Falk Zakrzewski
- Department of Biology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Martin Schmidt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Thomas Schmidt
- Department of Biology, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
22
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
23
|
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. LINEs between Species: Evolutionary Dynamics of LINE-1 Retrotransposons across the Eukaryotic Tree of Life. Genome Biol Evol 2016; 8:3301-3322. [PMID: 27702814 PMCID: PMC5203782 DOI: 10.1093/gbe/evw243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons are dynamic elements. They have the potential to cause great genomic change because of their ability to ‘jump’ around the genome and amplify themselves, resulting in the duplication and rearrangement of regulatory DNA. Active L1, in particular, are often thought of as tightly constrained, homologous and ubiquitous elements with well-characterized domain organization. For the past 30 years, model organisms have been used to define L1s as 6–8 kb sequences containing a 5′-UTR, two open reading frames working harmoniously in cis, and a 3′-UTR with a polyA tail. In this study, we demonstrate the remarkable and overlooked diversity of L1s via a comprehensive phylogenetic analysis of elements from over 500 species from widely divergent branches of the tree of life. The rapid and recent growth of L1 elements in mammalian species is juxtaposed against the diverse lineages found in other metazoans and plants. In fact, some of these previously unexplored mammalian species (e.g. snub-nosed monkey, minke whale) exhibit L1 retrotranspositional ‘hyperactivity’ far surpassing that of human or mouse. In contrast, non-mammalian L1s have become so varied that the current classification system seems to inadequately capture their structural characteristics. Our findings illustrate how both long-term inherited evolutionary patterns and random bursts of activity in individual species can significantly alter genomes, highlighting the importance of L1 dynamics in eukaryotes.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Daniel Kortschak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Terry Bertozzi
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification. Genetica 2016; 144:577-589. [PMID: 27671023 DOI: 10.1007/s10709-016-9926-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022]
Abstract
Transposable elements (TEs) dominate the landscapes of most plant and animal genomes. Once considered junk DNA and genetic parasites, these interspersed, repetitive DNA elements are now known to play major roles in both genetic and epigenetic processes that sponsor genome variation and regulate gene expression. Knowledge of TE consensus sequences from elements in species whose genomes have not been sequenced is limited, and the individual TEs that are encountered in clones or short-reads rarely represent potentially canonical, let alone, functional representatives. In this study, we queried the Repbase database with eight BAC clones from white clover (Trifolium repens), identified a large number of candidate TEs, and used polymerase chain reaction and Sanger sequencing to create consensus sequences for three new TE families. The results show that TE family consensus sequences can be obtained experimentally in species for which just a single, full-length member of a TE family has been sequenced.
Collapse
|
25
|
Santos FC, Guyot R, do Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela ALL. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome Res 2016; 23:571-82. [PMID: 26386563 DOI: 10.1007/s10577-015-9492-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Like other eukaryotes, the nuclear genome of plants consists of DNA with a small proportion of low-copy DNA (genes and regulatory sequences) and very abundant DNA sequence motifs that are repeated thousands up to millions of times in the genomes including transposable elements (TEs) and satellite DNA. Retrotransposons, one class of TEs, are sequences that amplify via an RNA intermediate and reinsert into the genome, are often the major fraction of a genome. Here, we put research on retrotransposons into the larger context of plant repetitive DNA and genome behaviour, showing features of genome evolution in a grass genus, Brachiaria, in relation to other plant species. We show the contrasting amplification of different retroelement fractions across the genome with characteristics for various families and domains. The genus Brachiaria includes both diploid and polyploid species, with similar chromosome types and chromosome basic numbers x = 6, 7, 8 and 9. The polyploids reproduce asexually and are apomictic, but there are also sexual species. Cytogenetic studies and flow cytometry indicate a large variation in DNA content (C-value), chromosome sizes and genome organization. In order to evaluate the role of transposable elements in the genome and karyotype organization of species of Brachiaria, we searched for sequences similar to conserved regions of TEs in RNAseq reads library produced in Brachiaria decumbens. Of the 9649 TE-like contigs, 4454 corresponded to LTR-retrotransposons, and of these, 79.5 % were similar to members of the gypsy superfamily. Sequences of conserved protein domains of gypsy were used to design primers for producing the probes. The probes were used in FISH against chromosomes of accesses of B. decumbens, Brachiaria brizantha, Brachiaria ruziziensis and Brachiaria humidicola. Probes showed hybridization signals predominantly in proximal regions, especially those for retrotransposons of the clades CRM and Athila, while elements of Del and Tat exhibited dispersed signals, in addition to those proximal signals. These results show that the proximal region of Brachiaria chromosomes is a hotspot for retrotransposon insertion, particularly for the gypsy family. The combination of high-throughput sequencing and a chromosome-centric cytogenetic approach allows the abundance, organization and nature of transposable elements to be characterized in unprecedented detail. By their amplification and dispersal, retrotransposons can affect gene expression; they can lead to rapid diversification of chromosomes between species and, hence, are useful for studies of genome evolution and speciation in the Brachiaria genus. Centromeric regions can be identified and mapped, and retrotransposon markers can also assisting breeders in the developing and exploiting interspecific hybrids.
Collapse
Affiliation(s)
- Fabíola Carvalho Santos
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, 86057-970, Paraná State, Brazil
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR IPME, BP 64501, 34394, Montpellier Cedex, France
| | | | - Lucimara Chiari
- Embrapa Gado de Corte, 79106-550, Campo Grande, Mato Grosso do Sul State, Brazil
| | - Vânia Helena Techio
- Department of Biology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais State, Brazil
| | | | - André Luís Laforga Vanzela
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, 86057-970, Paraná State, Brazil.
| |
Collapse
|
26
|
Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC PLANT BIOLOGY 2016; 16:120. [PMID: 27230558 PMCID: PMC4881148 DOI: 10.1186/s12870-016-0805-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.
Collapse
Affiliation(s)
- Teresa Kowar
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| | - Falk Zakrzewski
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, Česke Budějovice, CZ-37005, Czech Republic
| | - Andrea Kobližková
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, Česke Budějovice, CZ-37005, Czech Republic
| | - Prisca Viehoever
- CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, D-33615, Germany
| | - Bernd Weisshaar
- CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, D-33615, Germany.
| | - Thomas Schmidt
- Department of Plant Cell and Molecular Biology, TU Dresden, Dresden, D-01062, Germany
| |
Collapse
|
27
|
Seibt KM, Wenke T, Muders K, Truberg B, Schmidt T. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:268-285. [PMID: 26996788 DOI: 10.1111/tpj.13170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.
Collapse
Affiliation(s)
- Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | | | | | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
28
|
Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, Weisshaar B, Himmelbauer H, Schmidt T. Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:229-44. [PMID: 26676716 DOI: 10.1111/tpj.13103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 05/18/2023]
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous non-long terminal repeat retrotransposons which are widely distributed in eukaryotic organisms. While SINEs have been intensively studied in animals, only limited information is available about plant SINEs. We analysed 22 SINE families from seven genomes of the Amaranthaceae family and identified 34 806 SINEs, including 19 549 full-length copies. With the focus on sugar beet (Beta vulgaris), we performed a comparative analysis of the diversity, genomic and chromosomal organization and the methylation of SINEs to provide a detailed insight into the evolution and age of Amaranthaceae SINEs. The lengths of consensus sequences of SINEs range from 113 nucleotides (nt) up to 224 nt. The SINEs show dispersed distribution on all chromosomes but were found with higher incidence in subterminal euchromatic chromosome regions. The methylation of SINEs is increased compared with their flanking regions, and the strongest effect is visible for cytosines in the CHH context, indicating an involvement of asymmetric methylation in the silencing of SINEs.
Collapse
Affiliation(s)
| | - Torsten Wenke
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Falk Zakrzewski
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - André Minoche
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Garvan Institute of Medical Research, 2010, Sydney, NSW, Australia
| | - Juliane C Dohm
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Bernd Weisshaar
- CeBiTec & Department of Biology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Heinz Himmelbauer
- Garvan Institute of Medical Research, 2010, Sydney, NSW, Australia
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
29
|
Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 2015; 23:791-806. [DOI: 10.1007/s10577-015-9500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
|