1
|
Aljedaani F, Luo Y, Deng Y, Smet W, Nasim Z, Xu X, Shahul Hameed UF, Xiao TT, Gonzalez-Kise JK, Arold S, Blilou I. The dual function of EMB1579 in transcription and splicing governs tissue patterning in the Arabidopsis root meristem. Cell Rep 2025; 44:115660. [PMID: 40333181 DOI: 10.1016/j.celrep.2025.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
In the root meristem of Arabidopsis, stem cell maintenance depends on the coordinated action of transcription factor networks. The transcriptional regulator EMBRYO DEFECTIVE 1579 (EMB1579), a protein that forms nuclear condensates, regulates plant growth. However, the molecular mechanisms through which it functions in the root meristem remain largely unclear. Here, we show that EMB1579 is required for stem cell maintenance and proper cell division orientation. EMB1579 modulates the function of two root stem cell regulatory modules, PLETHORAs and SCARECROW-SHORT-ROOT, through a process involving transcriptional regulation and RNA splicing. We show that EMB1579 acts as a catalyst for stem cell gene expression, and its activity is fine-tuned by its physical association with RNA splicing factors. The formation of nuclear condensates is essential for EMB1579 function in the root meristem. Our findings reveal a mechanism by which EMB1579 regulates stem cell determinants in the root meristem and expand the understanding of gene regulation complexity in plant development.
Collapse
Affiliation(s)
- Fatimah Aljedaani
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yinghui Luo
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Wouter Smet
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Xinjing Xu
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Umar F Shahul Hameed
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose Kenyi Gonzalez-Kise
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan Arold
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Mejias J, Margets A, Bredow M, Foster J, Khwanbua E, Goshon J, Maier TR, Whitham SA, Innes RW, Baum TJ. A novel toolbox of GATEWAY-compatible vectors for rapid functional gene analysis in soybean composite plants. PLANT CELL REPORTS 2025; 44:72. [PMID: 40063264 DOI: 10.1007/s00299-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
KEY MESSAGE We developed a set of GATEWAY vectors to accelerate gene function analysis in soybean composite plants to rapidly screen transgenic roots and investigate subcellular localization, protein-protein interactions, and root-pathogen interactions. The generation of transgenic plants is essential for plant biology research to investigate plant physiology, pathogen interactions, and gene function. However, producing stable transgenic plants for plants such as soybean is a laborious and time-consuming process, which can impede research progress. Composite plants consisting of wild-type shoots and transgenic roots are an alternative method for generating transgenic plant tissues that can facilitate functional analysis of genes-of-interest involved in root development or root-microbe interactions. In this report, we introduce a novel set of GATEWAY-compatible vectors that enable a wide range of molecular biology uses in roots of soybean composite plants. These vectors incorporate in-frame epitope fusions of green fluorescent protein, 3x-HA, or miniTurbo-ID, which can be easily fused to a gene-of-interest using the GATEWAY cloning system. Moreover, these vectors allow for the identification of transgenic roots using either mCherry fluorescence or the RUBY marker. We demonstrate the functionality of these vectors by expressing subcellular markers in soybean, providing evidence of their effectiveness in generating protein fusions in composite soybean plants. Furthermore, we show how these vectors can be used for gene function analysis by expressing the bacterial effector, AvrPphB in composite roots, enabling the identification of soybean targets via immunoprecipitation followed by mass spectrometry. Additionally, we demonstrate the successful expression of stable miniTurbo-ID fusion proteins in composite roots. Overall, this new set of vectors is a powerful tool that can be used to assess subcellular localization and perform gene function analyses in soybean roots without the need to generate stable transgenic plants.
Collapse
Affiliation(s)
- Joffrey Mejias
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Jackson Goshon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Zhang Y, Dong G, Wu X, Chen F, Ruan B, Jiang Y, Zhang Y, Liu L, Yuan YW, Wu L, Wei J, Qian Q, Yu Y. Rice RuBisCO activase promotes the dark-induced leaf senescence by enhancing the degradation of filamentation temperature-sensitive H. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17267. [PMID: 39962361 DOI: 10.1111/tpj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 05/09/2025]
Abstract
Leaf senescence is a complex process that is triggered by many developmental and environmental factors. However, the mechanisms regulating leaf senescence remain unclear. Here, we revealed that rice ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) promotes the onset of basal dark-induced senescence. RCA was mainly expressed in the leaves, and its expression level quickly declined under dark conditions. Furthermore, rca mutant plants presented a prolonged leaf longevity phenotype in the dark, whereas overexpression of the large isoform of RCA (RCAL), not small isoform (RCAS), in rice and Arabidopsis accelerated leaf senescence. Filamentation temperature-sensitive H (OsFtsH1), a zinc metalloprotease, interacts with RCAL and RCAS and presents a higher binding efficiency to RCAL than RCAS in darkness. Furthermore, we found that RCAL promotes 26S proteasome-mediated degradation of OsFtsH1 protein, which can be inhibited by protease inhibitor MG132. Consequently, OsFtsH1 loss-of-function mutants exhibit accelerated leaf senescence, whereas OsFtsH1-overexpressing plants display delayed senescence. Collectively, our findings highlight the significant role of RCAL isoform in regulating leaf senescence under dark conditions, particularly through enhancing the degradation of OsFtsH1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Xiaoyue Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lu Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jian Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| |
Collapse
|
4
|
Kahrizi Z, Michailidis C, Raabe K, Kumar V, Honys D, Hafidh S. The translation initiation factor eIF3M2 upregulates HEAT SHOCK PROTEIN 70 to maintain pollen tube membrane integrity during heat shock. PLANT PHYSIOLOGY 2024; 197:kiae643. [PMID: 39854649 DOI: 10.1093/plphys/kiae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds. Surprisingly, under HS at 37 °C, eif3m1 pollen germination outperformed wild-type Col-0, showing enhanced PT integrity. We established that the improved thermotolerance of the eif3m1 PT was due to increased expression of its putative paralog eIF3M2, which in turn upregulated Heat Shock protein 70 (HSP70) mRNA and protein levels. Indeed, eIF3M2 overexpression upregulated HSP70 expression, whereas eif3m2 knockdown showed reduced HSP70.1 promoter activity and increased in PT burst under HS conditions. Moreover, we show that eIF3M2 coimmunoprecipitates with HSP70 in PTs and directly interacts with cytoplasmic HSP70.1/2/4 and eIF4G in Nicotiana benthamiana pavement cells. Collectively, our data revealed that plants employ the eIF3M2-HSP70 module as a regulator of thermotolerance to maintain PT membrane integrity and improve fertilization and seed set adaptation under high temperatures.
Collapse
Affiliation(s)
- Zahra Kahrizi
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Karel Raabe
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| |
Collapse
|
5
|
Khan M, Uhse S, Bindics J, Kogelmann B, Nagarajan N, Tabassum R, Ingole KD, Djamei A. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis. THE NEW PHYTOLOGIST 2024; 244:949-961. [PMID: 39021059 DOI: 10.1111/nph.19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors. Here, we screened 297 U. maydis effector candidates for their ability to interact with maize TPL protein RAMOSA 1 ENHANCER LOCUS 2 LIKE 2 (RELK2) and their ability to induce auxin signaling and thereby identified three novel TPL-interacting protein effectors (Tip6, Tip7, and Tip8). Structural modeling and mutational analysis allowed the identification of TPL-interaction motifs of Tip6 and Tip7. In planta interaction between Tip6 and Tip7 with RELK2 occurs mainly in nuclear compartments, whereas Tip8 colocalizes with RELK2 in a compartment outside the nucleus. Overexpression of Tip8 in nonhost plants leads to cell death, indicating recognition of the effector or its activity. By performing infection assays with single and multideletion mutants of U. maydis, we demonstrate a positive role of Tip6 and Tip7 in U. maydis virulence. Transcriptional profiling of maize leaves infected with Tip effector mutants in comparison with SG200 strain suggests Tip effector activities are not merely redundant.
Collapse
Affiliation(s)
- Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Nithya Nagarajan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Riaz Tabassum
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| |
Collapse
|
6
|
Zheng H, Yuan C, Bu T, Liu Q, Li J, Wang F, Zhang Y, He L, Gao J. SSA4 Mediates Cd Tolerance via Activation of the Cis Element of VHS1 in Yeast and Enhances Cd Tolerance in Chinese Cabbage. Int J Mol Sci 2024; 25:11026. [PMID: 39456809 PMCID: PMC11507436 DOI: 10.3390/ijms252011026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identifying key genes involved in Cadmium (Cd) response pathways in plants and developing low-Cd-accumulating cultivars may be the most effective and eco-friendly strategy to tackle the problem of Cd pollution in crops. In our previous study, Stressseventy subfamily A 4 (SSA4) was identified to be associated with Cd tolerance in yeast. Here, we investigated the mechanism of SSA4 in regulating Cd tolerance in yeast. ScSSA4 binds to POre Membrane 34 (POM34), a key component of nuclear pore complex (NPC), and translocates from the cytoplasm to the nucleus, where it regulates the expression of its downstream gene, Viable in a Hal3 Sit4 background 1 (VHS1), resulting in reduced Cd accumulation in yeast cells. Additionally, we identified a Chinese cabbage SSA4 gene, BrSSA4c, which could enhance the Cd tolerance in Chinese cabbage. This study offers new insights into the regulatory mechanisms of Cd tolerance in yeast, a model organism, and paves the way for the genetic enhancement of Cd tolerance in Chinese cabbage.
Collapse
Affiliation(s)
- Han Zheng
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Chao Yuan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China;
| | - Tong Bu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Qun Liu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Lilong He
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| |
Collapse
|
7
|
Jing Y, Pei T, Zhang S, Li C, Zhan M, Li C, Gong X, Mao K, Liu C, Ma F. Overexpression of FERONIA receptor kinase MdMRLK2 regulates lignin accumulation and enhances water use efficiency in apple under long-term water deficit condition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2638-2653. [PMID: 39039969 DOI: 10.1111/tpj.16938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Water use efficiency (WUE) is crucial for apple tree fitness and survival, especially in response to climatic changes. The receptor-like kinase FERONIA is reportedly an essential regulator of plant stress responses, but its role in regulating WUE under water deficit conditions is unclear. Here, we found that overexpressing the apple FERONIA receptor kinase gene, MdMRLK2, enhanced apple WUE under long-term water deficit conditions. Under drought treatment, 35S::MdMRLK2 apple plants exhibited higher photosynthetic capacity and antioxidant enzyme activities than wild-type (WT) plants. 35S::MdMRLK2 apple plants also showed increased biomass accumulation, root activity, and water potential compared to WT plants. Moreover, MdMRLK2 physically interacts with and phosphorylates cinnamoyl-CoA reductase 1, MdCCR1, an enzyme essential for lignin synthesis, at position Ser260. This interaction likely contributed to increased vessel density, vascular cylinder area, and lignin content in 35S::MdMRLK2 apple plants under drought conditions. Therefore, our findings reveal a novel function of MdMRLK2 in regulating apple WUE under water deficit conditions.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
He Z, Zhou M, Feng X, Di Q, Meng D, Yu X, Yan Y, Sun M, Li Y. The Role of Brassinosteroids in Plant Cold Stress Response. Life (Basel) 2024; 14:1015. [PMID: 39202757 PMCID: PMC11355907 DOI: 10.3390/life14081015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Temperature affects plant growth and geographical distribution. Cold stress occurs when temperatures fall below the physiologically optimal range for plants, causing permanent and irreversible damage to plant growth, development, and production. Brassinosteroids (BRs) are steroid hormones that play an important role in plant growth and various stress responses. Recent studies have shown that low temperatures affect BR biosynthesis in many plant species and that BR signaling is involved in the regulation of plant tolerance to low temperatures, both in the CBF-dependent and CBF-independent pathways. These two regulatory pathways correspond to transient and acclimation responses of low temperature, respectively. The crosstalk between BRs and other hormones is a significant factor in low-temperature tolerance. We provide an overview of recent developments in our knowledge of BRs' function in plant responses to cold stress and how they interact with other plant hormones in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| |
Collapse
|
9
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
10
|
Sivakumar P, Vaishnavi V, Gayatri K, Satheesh GR, Siddiqi I. Improved validation of protein interactions using bicistronic BiFC (Bi2FC). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1047-1054. [PMID: 39100877 PMCID: PMC11291819 DOI: 10.1007/s12298-024-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
Refolding based Bimolecular Fluorescence Complementation (BiFC) has emerged as an important in vivo technique to identify protein interactions. Significant improvements have been made to enhance the detection capacities of BiFC, however less attention has been paid to the detection of expression levels of proteins. Here we demonstrate development and validation of an improved method to identify protein interactions that incorporates an expression control based on bicistronic expression of the protein of interest and a fluorescent protein separated by a self-cleaving peptide. This method gives robust identification of positive interactions and more reliably identifies absence of interactions. We also show an earlier identified non-interacting pair in yeast two-hybrid (Y2H) to be interacting in vivo. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01477-y.
Collapse
Affiliation(s)
- Prakash Sivakumar
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vijayaraj Vaishnavi
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Kothuri Gayatri
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Gayathri R. Satheesh
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Imran Siddiqi
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
11
|
Bai Y, Yang Q, Gan Y, Li M, Zhao Z, Dong E, Li C, He D, Mei X, Cai Y. The ZmNF-YC1-ZmAPRG pathway modulates low phosphorus tolerance in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2867-2881. [PMID: 38393826 DOI: 10.1093/jxb/erae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and yield. Low phosphate use efficiency makes it important to clarify the molecular mechanism of low P stress. In our previous studies, a P efficiency gene ZmAPRG was identified. Here, we further screened the upstream regulator ZmNF-YC1 of ZmAPRG by yeast one hybrid (Y1H) assay, and found it was a low inorganic phosphorus (Pi)-inducible gene. The results of dual luciferase assays, expression analysis, and ChIP-qPCR assays showed that ZmNF-YC1 is a positive regulator of ZmAPRG. Overexpression of ZmNF-YC1 improved low P tolerance, whereas knockout of ZmNF-YC1 decreased low P tolerance in maize. Bimolecular fluorescence complementation (BiFC), yeast two hybrid (Y2H) assay, and yeast three hybrid (Y3H) assay further showed that ZmNF-YC1 can interact with ZmNF-YB14, and recruit ZmNF-YA4/10 to form NF-Y complexes. Transcriptional activation assay confirmed that the NF-Y complexes can activate the promoters of ZmAPRG. Meanwhile, transcriptome and metabolome analyses indicated that overexpression of ZmAPRG improves low P tolerance by regulating lipid composition and photosynthetic capacity, and chlorophyll fluorescence parameters provided evidence in support of this hypothesis. Furthermore, overexpression of ZmAPRG increased grain yield in inbred and hybrid maize under low P conditions. Taken together, our research revealed a low P tolerance mechanism of the ZmNF-YC1-ZmAPRG pathway.
Collapse
Affiliation(s)
- Yang Bai
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Qiuyue Yang
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yuling Gan
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Mei Li
- Department of Agriculture and Horticulture, Guangxi Agricultural Vocational University, Nanning 530007, Guangxi, China
| | - Zikun Zhao
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Erfei Dong
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Di He
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiupeng Mei
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yilin Cai
- Maize Research Institute, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Tang L, Li G, Wang H, Zhao J, Li Z, Liu X, Shu Y, Liu W, Wang S, Huang J, Ying J, Tong X, Yuan W, Wei X, Tang S, Wang Y, Bu Q, Zhang J. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J Adv Res 2024; 59:35-47. [PMID: 37399924 PMCID: PMC11081964 DOI: 10.1016/j.jare.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.
Collapse
Affiliation(s)
- Liqun Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangjin Wei
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shaoqing Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin 150081, China; The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Zhang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
13
|
Wang W, Zheng H. Arabidopsis reticulons inhibit ROOT HAIR DEFECTIVE3 to form a stable tubular endoplasmic reticulum network. PLANT PHYSIOLOGY 2024; 194:1431-1446. [PMID: 37879114 DOI: 10.1093/plphys/kiad574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
The endoplasmic reticulum (ER) is a network of interconnected tubules and sheets stretching throughout the cytoplasm of plant cells. In Arabidopsis (Arabidopsis thaliana), ROOT HAIR DEFECTIVE3 (RHD3) mediates ER tubule fusion, while reticulon proteins induce ER membrane curvature to produce ER tubules. However, it is unclear if and how RHD3-reticulon interplay during the formation of the interconnected tubular ER network. We discovered that RHD3 physically interacts with Arabidopsis reticulon proteins, including reticulon-like protein subfamily B3 (RTNLB3), on ER tubules and at 3-way junctions of the ER. The RTNLB3 protein is widely expressed in Arabidopsis seedlings and localizes to ER tubules. Although the growth of knockout rtnlb3 mutant plants was relatively normal, root hairs of rtnlb3 were shorter than those of wild type. The ER in mature mutant cells was also more sheeted than that in wild type. rhd3 is known to have short roots and root hairs and less branched ER tubules in cells. Interestingly, rtnlb3 genetically antagonizes rhd3 in plant root development and in ER interconnectivity. We show that reticulons including RTNLB3 inhibit the ER fusion activity of RHD3, partly by interfering with RHD3 dimerization. We conclude that reticulon proteins negatively regulate RHD3 to balance its ER fusion activity for the formation of a stable tubular ER network in plant cell growth.
Collapse
Affiliation(s)
- Weina Wang
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
14
|
Zhou L, Xiang X, Ji D, Chen Q, Ma T, Wang J, Liu C. A Carbonic Anhydrase, ZmCA4, Contributes to Photosynthetic Efficiency and Modulates CO2 Signaling Gene Expression by Interacting with Aquaporin ZmPIP2;6 in Maize. PLANT & CELL PHYSIOLOGY 2024; 65:243-258. [PMID: 37955399 DOI: 10.1093/pcp/pcad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Carbonic anhydrase (CA) catalyzes the reversible CO2 hydration reaction that produces bicarbonate for phosphoenolpyruvate carboxylase (PEPC). This is the initial step for transmitting the CO2 signal in C4 photosynthesis. However, it remains unknown whether the maize (Zea mays L.) CA gene, ZmCA4, plays a role in the maize photosynthesis process. In our study, we found that ZmCA4 was relatively highly expressed in leaves and localized in the chloroplast and the plasma membrane of mesophyll protoplasts. Knock-out of ZmCA4 reduced CA activity, while overexpression of ZmCA4 increased rubisco activity, as well as the quantum yield and relative electron transport rate in photosystem II. Overexpression of ZmCA4 enhanced maize yield-related traits. Moreover, ZmCA4 interacted with aquaporin ZmPIP2;6 in bimolecular fluorescence complementation and co-immunoprecipitation experiments. The double-knock-out mutant for ZmPIP2;6 and ZmCA4 genes showed reductions in its growth, CA and PEPC activities, assimilation rate and photosystem activity. RNA-Seq analysis revealed that the expression of other ZmCAs, ZmPIPs, as well as CO2 signaling pathway homologous genes, and photosynthetic-related genes was all altered in the double-knock-out mutant compared with the wild type. Altogether, our study's findings point to a critical role of ZmCA4 in determining photosynthetic capacity and modulating CO2 signaling regulation via its interaction with ZmPIP2;6, thus providing insight into the potential genetic value of ZmCA4 for maize yield improvement.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaoqin Xiang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Dongpu Ji
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Qiulan Chen
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tengfei Ma
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jiuguang Wang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Chaoxian Liu
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
15
|
Yuan C, Hu Y, Liu Q, Xu J, Zhou W, Yu H, Shen L, Qin C. MED8 regulates floral transition in Arabidopsis by interacting with FPA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1234-1247. [PMID: 37565662 DOI: 10.1111/tpj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Success in plant reproduction is highly dependent on the correct timing of the floral transition, which is tightly regulated by the flowering pathways. In the model plant Arabidopsis thaliana, the central flowering repressor FLOWERING LOCUS C (FLC) is precisely regulated by multiple flowering time regulators in the vernalization pathway and autonomous pathway, including FPA. Here we report that Arabidopsis MEDIATOR SUBUNIT 8 (MED8) promotes floral transition in Arabidopsis by recruiting FPA to the FLC locus to repress FLC expression. Loss of MED8 function leads to a significant late-flowering phenotype due to increased FLC expression. We further show that MED8 directly interacts with FPA in the nucleus and recruits FPA to the FLC locus. Moreover, MED8 is indispensable for FPA's function in controlling flowering time and regulating FLC expression. Our study thus reveals a flowering mechanism by which the Mediator subunit MED8 represses FLC expression by facilitating the binding of FPA to the FLC locus to ensure appropriate timing of flowering for reproductive success.
Collapse
Affiliation(s)
- Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yikai Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
16
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Satapathy S, Walker H, Brown J, Gambin Y, Wilson MR. The N-end rule pathway regulates ER stress-induced clusterin release to the cytosol where it directs misfolded proteins for degradation. Cell Rep 2023; 42:113059. [PMID: 37660295 DOI: 10.1016/j.celrep.2023.113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Previous work suggests that cell stress induces release of the normally secreted chaperone clusterin (CLU) into the cytosol. We analyzed the localization of CLU in healthy and stressed cells, the mechanism of its cytosolic release, and its interactions with cytosolic misfolded proteins. Key results of this study are the following: (1) full-length CLU is released to the cytosol during stress, (2) the CLU N-terminal D1 residue is recognized by the N-end rule pathway and together with the enzyme ATE1 is essential for cytosolic release, (3) CLU can form stable complexes with cytosolic misfolded proteins and direct them to the proteasome and autophagosomes, and (4) cytosolic CLU protects cells from hypoxic stress and the cytosolic overexpression of an aggregation-prone protein. Collectively, the results suggest that enhanced cytosolic release of CLU is a stress response that can inhibit the toxicity of misfolded proteins and facilitate their targeted degradation via both autophagy and the proteasome.
Collapse
Affiliation(s)
- Sandeep Satapathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Holly Walker
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
18
|
Wu Y, Liu C, Koganitsky A, Gong FL, Li S. Discovering Dynamic Plant Enzyme Complexes in Yeast for Kratom Alkaloid Pathway Identification. Angew Chem Int Ed Engl 2023; 62:e202307995. [PMID: 37549372 PMCID: PMC10530425 DOI: 10.1002/anie.202307995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Discovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast-based screening method to capture the protein-protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid-producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine β-D-glucosidase (MsSGD), and four medium-chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post-translational regulation features to discover novel plant natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Yinan Wu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Chang Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Koganitsky
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Franklin L Gong
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
19
|
Shu Y, Zhang W, Tang L, Li Z, Liu X, Liu X, Liu W, Li G, Ying J, Huang J, Tong X, Hu H, Zhang J, Wang Y. ABF1 Positively Regulates Rice Chilling Tolerance via Inducing Trehalose Biosynthesis. Int J Mol Sci 2023; 24:11082. [PMID: 37446259 DOI: 10.3390/ijms241311082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Chilling stress seriously limits grain yield and quality worldwide. However, the genes and the underlying mechanisms that respond to chilling stress remain elusive. This study identified ABF1, a cold-induced transcription factor of the bZIP family. Disruption of ABF1 impaired chilling tolerance with increased ion leakage and reduced proline contents, while ABF1 over-expression lines exhibited the opposite tendency, suggesting that ABF1 positively regulated chilling tolerance in rice. Moreover, SnRK2 protein kinase SAPK10 could phosphorylate ABF1, and strengthen the DNA-binding ability of ABF1 to the G-box cis-element of the promoter of TPS2, a positive regulator of trehalose biosynthesis, consequently elevating the TPS2 transcription and the endogenous trehalose contents. Meanwhile, applying exogenous trehalose enhanced the chilling tolerance of abf1 mutant lines. In summary, this study provides a novel pathway 'SAPK10-ABF1-TPS2' involved in rice chilling tolerance through regulating trehalose homeostasis.
Collapse
Affiliation(s)
- Yazhou Shu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wensheng Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xinyong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
20
|
Zhang Y, Chen M, Liu T, Qin K, Fernie AR. Investigating the dynamics of protein-protein interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:965-983. [PMID: 36919339 DOI: 10.1111/tpj.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 05/27/2023]
Abstract
Both stable and transient protein interactions play an important role in the complex assemblies required for the proper functioning of living cells. Several methods have been developed to monitor protein-protein interactions in plants. However, the detection of dynamic protein complexes is very challenging, with few technologies available for this purpose. Here, we developed a new platform using the plant UBIQUITIN promoter to drive transgene expression and thereby to detect protein interactions in planta. Typically, to decide which side of the protein to link the tags, the subcellular localization of the protein fused either N-terminal or C-terminal mCitrine was firstly confirmed by using eight different specific mCherry markers. Following stable or transient protein expression in plants, the protein interaction network was detected by affinity purification mass spectrometry. These interactions were subsequently confirmed by bimolecular fluorescence complementation (BiFC), bioluminescence resonance energy transfer and co-immunoprecipitation assays. The dynamics of these interactions were monitored by Förster resonance energy transfer (FRET) and split-nano luciferase, whilst the ternary protein complex association was monitored by BiFC-FRET. Using the canonical glycolytic metabolon as an example, the interaction between these enzymes was characterized under conditions that mimic physiologically relevant energy statuses.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Kezhen Qin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
21
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Guan JC, Li C, Flint-Garcia S, Suzuki M, Wu S, Saunders JW, Dong L, Bouwmeester HJ, McCarty DR, Koch KE. Maize domestication phenotypes reveal strigolactone networks coordinating grain size evolution with kernel-bearing cupule architecture. THE PLANT CELL 2023; 35:1013-1037. [PMID: 36573016 PMCID: PMC10015167 DOI: 10.1093/plcell/koac370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1). Here we show that a more complete conversion involves strigolactones (SLs), and that these are prominent players not only in the Tga1 phenotype but also other domestication features of the ear and kernel. Genetic combinations of a teosinte tga1 allele with three SL-related mutants progressively enhanced ancestral morphologies. The SL mutants, in addition to modulating the tga1 phenotype, also reshaped kernel-bearing pedicels and cupules in a teosinte-like manner. Genetic and molecular evidence are consistent with SL regulation of TGA1, including direct interaction of TGA1 with components of the SL-signaling system shown here to mediate TGA1 availability by sequestration. Roles of the SL network extend to enhancing maize seed size and, importantly, coordinating increased kernel growth with remodeling of protective maternal tissues. Collectively, our data show that SLs have central roles in releasing kernels from restrictive maternal encasement and coordinating other factors that increase kernel size, physical support, and their exposure on the grain-bearing surface.
Collapse
Affiliation(s)
- Jiahn-Chou Guan
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Changsheng Li
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Sherry Flint-Garcia
- United States Department of Agriculture – Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
| | - Jonathan W Saunders
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
| | - Lemeng Dong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
23
|
Yan P, Tuo D, Shen W, Deng H, Zhou P, Gao X. A Nimble Cloning-compatible vector system for high-throughput gene functional analysis in plants. PLANT COMMUNICATIONS 2023; 4:100471. [PMID: 36352791 PMCID: PMC10030367 DOI: 10.1016/j.xplc.2022.100471] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/04/2023]
Abstract
Plant expression vectors are essential tools for gene functional analysis and molecular plant breeding. The gene of interest is transferred to the vector by molecular cloning technology. Nimble Cloning is a newly developed molecular cloning method with the advantages of simplicity, efficiency, and standardization. In this study, we developed a "pNC" vector system that contains 55 Nimble Cloning-compatible vectors for functional analysis of genes in plants. These vectors contain the NC frame flanked by unique adapters for one-step and standardized Nimble Cloning. We demonstrate that the pNC vectors are convenient and effective for the functional analysis of plant genes, including the study of gene ectopic expression, protein subcellular localization, protein-protein interaction, gene silencing (RNAi), virus-induced gene silencing, promoter activity, and CRISPR-Cas9-mediated genome editing. The "pNC" vector system represents a high-throughput toolkit that can facilitate the large-scale analysis of plant functional genomics.
Collapse
Affiliation(s)
- Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Haida Deng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Xinzheng Gao
- Department of Biology, Hainan Medical University, Haikou, China.
| |
Collapse
|
24
|
Wu Y, Liu C, Gong FL, Li S. Discovering dynamic plant enzyme complexes in yeast for novel alkaloid pathway identification from a medicinal plant kratom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524293. [PMID: 36711573 PMCID: PMC9882157 DOI: 10.1101/2023.01.16.524293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Discovering natural product biosynthetic pathways from medicinal plants is challenging and laborious, largely due to the complexity of the transcriptomics-driven pathway prediction process. Here we developed a novel approach that captures the protein-level connections between enzymes for pathway discovery with improved accuracy. We proved that heterologous protein-protein interaction screening in yeast enabled the efficient discovery of both dynamic plant enzyme complexes and the pathways they organize. This approach discovered complexes and pathways in the monoterpene indole alkaloid metabolism of a medicinal plant, kratom with high success rate. Screening using a strictosidine β-D-glucosidase (MsSGD1) against 19 medium-chain dehydrogenase/reductases (MsMDRs) identified five MsSGD1-MsMDR complexes. Three out of the five interacting MsMDRs were then proven functional, while the remaining 14 non-interacting candidates did not show obvious activities. The work discovered three branched pathways by combining transcriptomics, metabolomics, and heterologous PPI screening and demonstrated a new plant pathway discovery strategy.
Collapse
Affiliation(s)
| | | | - Franklin L. Gong
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Jing Y, Liu C, Liu B, Pei T, Zhan M, Li C, Wang D, Li P, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 confers apple drought tolerance by regulating energy metabolism and free amino acids production. TREE PHYSIOLOGY 2023; 43:154-168. [PMID: 35972799 DOI: 10.1093/treephys/tpac100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major abiotic stress limiting the growth and production of apple trees worldwide. The receptor-like kinase FERONIA is involved in plant growth, development and stress responses; however, the function of FERONIA in apple under drought stress remains unclear. Here, the FERONIA receptor kinase gene MdMRLK2 from apple (Malus domestica) was shown to encode a plasma membrane-localized transmembrane protein and was significantly induced by abscisic acid and drought treatments. 35S::MdMRLK2 apple plants showed less photosystem damage and higher photosynthetic rates compared with wild-type (WT) plants, after withholding water for 7 days. 35S::MdMRLK2 apple plants also had enhanced energy levels, activated caspase activity and more free amino acids, than the WT, under drought conditions. By performing yeast two-hybrid screening, glyceraldehyde-3-phosphate dehydrogenase and MdCYS4, a member of cystatin, were identified as MdMRLK2 interaction partners. Moreover, under drought conditions, the 35S::MdMRLK2 apple plants were characterized by higher abscisic acid (ABA) content. Overall, these findings demonstrated that MdMRLK2 regulates apple drought tolerance, probably via regulating levels of energetic matters, free amino acids and ABA.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingbing Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
26
|
Che X, Splitt BL, Eckholm MT, Miller ND, Spalding EP. BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:211-224. [PMID: 36478485 PMCID: PMC10107345 DOI: 10.1111/tpj.16055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Gravitropism guides growth to shape plant architecture above and below ground. Mutations in LAZY1 impair stem gravitropism and cause less upright inflorescence branches (wider angles). The LAZY1 protein resides at the plasma membrane and in the nucleus. The plasma membrane pool is necessary and sufficient for setting branch angles. To investigate the molecular mechanism of LAZY1 function, we screened for LAZY1-interacting proteins in yeast. We identified BRXL4, a shoot-specific protein related to BREVIS RADIX. The BRXL4-LAZY1 interaction occurred at the plasma membrane in plant cells, and not detectably in the nucleus. Mutations in the C-terminus of LAZY1, but not other conserved regions, prevented the interaction. Opposite to lazy1, brxl4 mutants displayed faster gravitropism and more upright branches. Overexpressing BRXL4 produced strong lazy1 phenotypes. The apparent negative regulation of LAZY1 function is consistent with BRXL4 reducing LAZY1 expression or the amount of LAZY1 at the plasma membrane. Measurements indicated that both are true. LAZY1 mRNA was three-fold more abundant in brxl4 mutants and almost undetectable in BRXL4 overexpressors. Plasma membrane LAZY1 was higher and nuclear LAZY1 lower in brxl4 mutants compared with the wild type. To explain these results, we suggest that BRXL4 reduces the amount of LAZY1 at the plasma membrane where it functions in gravity signaling and promotes LAZY1 accumulation in the nucleus where it reduces LAZY1 expression, possibly by suppressing its own transcription. This explanation of how BRXL4 negatively regulates LAZY1 suggests ways to modify shoot system architecture for practical purposes.
Collapse
Affiliation(s)
- Ximing Che
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bessie L. Splitt
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Magnus T. Eckholm
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Nathan D. Miller
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Edgar P. Spalding
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
27
|
Nam JC, Bhatt PS, Kim SI, Kang HG. Co-immunoprecipitation for Assessing Protein-Protein Interactions in Agrobacterium-Mediated Transient Expression System in Nicotiana benthamiana. Methods Mol Biol 2023; 2690:101-110. [PMID: 37450140 DOI: 10.1007/978-1-0716-3327-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The characterization of protein-protein interactions (PPI) often provides functional information about a target protein. Yeast-two-hybrid (Y2H) and luminescence/fluorescence-based detections, therefore, have been widely utilized for assessing PPI. In addition, a co-immunoprecipitation (co-IP) method has also been adopted with transient protein expression in Nicotiana benthamiana (N. benthamiana) infiltrated with Agrobacterium tumefaciens. Herein, we describe a co-IP procedure in which structural maintenance of chromosome 1 (SMC1), identified from a Y2H screening, was verified as an interacting partner for microchidia 1 (MORC1), a protein well known for its function in plant immunity and epigenetics. SMC1 and MORC1 were transiently expressed in N. benthamiana when infiltrated by Agrobacterium with the respective genes. From this approach, we identified a region of SMC1 responsible for interacting with MORC1. The co-IP method, of which outputs are mainly from immunoblot analysis, provided information about target protein expression as well, which is often useful for troubleshooting. Using this feature, we showcased a PPI confirmation from our SMC1-MORC1 study in which a full-length SMC1 protein was not detectable, and, therefore, a subsequent truncated mutant analysis had to be employed for PPI verification.
Collapse
Affiliation(s)
- Ji Chul Nam
- Department of Molecular Biosciences, Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Padam S Bhatt
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Sung-Il Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
28
|
Tian P, Liu J, Yan B, Zhou C, Wang H, Shen R. BRASSINOSTEROID-SIGNALING KINASE1-1, a positive regulator of brassinosteroid signalling, modulates plant architecture and grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:283-295. [PMID: 36346128 DOI: 10.1093/jxb/erac429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are a crucial class of plant hormones that regulate plant growth and development, thus affecting many important agronomic traits in crops. However, there are still significant gaps in our understanding of the BR signalling pathway in rice. In this study, we provide multiple lines of evidence to indicate that BR-SIGNALING KINASE1-1 (OsBSK1-1) likely represents a missing component in the BR signalling pathway in rice. We showed that knockout mutants of OsBSK1-1 are less sensitive to BR and exhibit a pleiotropic phenotype, including lower plant height, less tiller number and shortened grain length, whereas transgenic plants overexpressing a gain-of-function dominant mutant form of OsBSK1-1 (OsBSK1-1A295V) are hypersensitive to BR, and exhibit some enhanced BR-responsive phenotypes. We found that OsBSK1-1 physically interacts with the BR receptor BRASSINOSTEROID INSENSITIVE1 (OsBRI1), and GLYCOGEN SYNTHASE KINASE2 (OsGSK2), a downstream component crucial for BR signalling. Moreover, we showed that OsBSK1-1 can be phosphorylated by OsBRI1 and can inhibit OsGSK2-mediated phosphorylation of BRASSINOSTEROID RESISTANT1 (OsBZR1). We further demonstrated that OsBSK1-1 genetically acts downstream of OsBRI1, but upstream of OsGSK2. Together, our results suggest that OsBSK1-1 may serve as a scaffold protein directly bridging OsBRI1 and OsGSK2 to positively regulate BR signalling, thus affecting plant architecture and grain size in rice.
Collapse
Affiliation(s)
- Peng Tian
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Jiafan Liu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Baohui Yan
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chunlei Zhou
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Shen
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Bajracharya A, Xi J, Grace KF, Bayer EE, Grant CA, Clutton CH, Baerson SR, Agarwal AK, Qiu Y. PHYTOCHROME-INTERACTING FACTOR 4/HEMERA-mediated thermosensory growth requires the Mediator subunit MED14. PLANT PHYSIOLOGY 2022; 190:2706-2721. [PMID: 36063057 PMCID: PMC9706435 DOI: 10.1093/plphys/kiac412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 05/19/2023]
Abstract
While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix-loop-helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes. While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.
Collapse
Affiliation(s)
| | - Jing Xi
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Oxford, Mississippi, USA
| | - Karlie F Grace
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Eden E Bayer
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Chloe A Grant
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Caroline H Clutton
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Scott R Baerson
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Oxford, Mississippi, USA
| | - Ameeta K Agarwal
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
- Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | | |
Collapse
|
30
|
Vo Phan MS, Tran PT, Citovsky V. Investigating Interactions Between Histone Modifying Enzymes and Transcription Factors in vivo by Fluorescence Resonance Energy Transfer. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/64656. [PMID: 36314833 PMCID: PMC9629860 DOI: 10.3791/64656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epigenetic regulation of gene expression is commonly affected by histone modifying enzymes (HMEs) that generate heterochromatic or euchromatic histone marks for transcriptional repression or activation, respectively. HMEs are recruited to their target chromatin by transcription factors (TFs). Thus, detecting and characterizing direct interactions between HMEs and TFs are critical for understanding their function and specificity better. These studies would be more biologically relevant if performed in vivo within living tissues. Here, a protocol is described for visualizing interactions in plant leaves between a plant histone deubiquitinase and a plant transcription factor using fluorescence resonance energy transfer (FRET), which allows the detection of complexes between protein molecules that are within <10 nm from each other. Two variations of the FRET technique are presented: SE-FRET (sensitized emission) and AB-FRET (acceptor bleaching), in which the energy is transferred non-radiatively from the donor to the acceptor or emitted radiatively by the donor upon photobleaching of the acceptor. Both SE-FRET and AB-FRET approaches can be adapted easily to discover other interactions between other proteins in planta.
Collapse
Affiliation(s)
- Mi Sa Vo Phan
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA,corresponding author: Mi Sa Vo Phan ()
| | - Phu Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
31
|
Li Y, Xue J, Wang FZ, Huang X, Gong BQ, Tao Y, Shen W, Tao K, Yao N, Xiao S, Zhou JM, Li JF. Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. NATURE PLANTS 2022; 8:802-816. [PMID: 35851623 DOI: 10.1038/s41477-022-01195-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/13/2022] [Indexed: 05/28/2023]
Abstract
Plants use cell-surface immune receptors to recognize pathogen-specific patterns to evoke basal immunity. ENHANCED DISEASE SUSCEPTIBILITY (EDS1) is known to be crucial for plant basal immunity, whereas its activation mechanism by pattern recognition remains enigmatic. Here, we show that the fungal pattern chitin induced the plasma membrane-anchored receptor-like cytoplasmic kinase PBS1-LIKE 19 (PBL19) to undergo nuclear translocation in Arabidopsis. The palmitoylation-deficient PBL19C3A variant constantly resided in the nucleus, triggering transcriptional self-amplification mainly through WRKY8 and EDS1-dependent constitutive immunity. Unexpectedly, the metacaspase-cleaved PBL19 lacking the N-terminal nuclear localization sequence specifically interacted with and phosphorylated EDS1 in the cytoplasm. Phosphodeficient EDS1 attenuated PBL19C3A-induced constitutive immunity, while phosphomimetic EDS1 complemented the loss of PBL19 for fungal resistance. Collectively, these findings reveal a compelling model wherein the plasma membrane, nuclear and cytoplasmic pools of PBL19 temporally coordinate distinct roles of immune signal receiver, amplifier and effector to boost plant antifungal immunity via EDS1.
Collapse
Affiliation(s)
- Yujia Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiao Xue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangjuan Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ben-Qiang Gong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuheng Tao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenzhong Shen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kehan Tao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
OsBSK3 Positively Regulates Grain Length and Weight by Inhibiting the Phosphatase Activity of OsPPKL1. PLANTS 2022; 11:plants11121586. [PMID: 35736737 PMCID: PMC9229280 DOI: 10.3390/plants11121586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
Brassinosteroids (BRs) are a crucial class of plant hormones that regulate many important agronomic traits in rice (Oryza sativa L.); thus, the BR signaling pathway is a very important tool for breeders to improve the grain yield and quantity of rice. Contrary to the well-established BR signaling pathway in Arabidopsis, there are significant gaps in the rice BR signaling pathway, especially the regulation mechanism from OsBSK3 to OsPPKLs and OsGSKs. In this study, we report how OsBSK3 knockout mutants confer shorter and lighter grains and exhibit a typical BR-insensitive phenotype, suggesting OsBSK3 plays a positive role in BR signaling without genetic redundancy with homologs. Furthermore, OsBSK3 could physically interact with OsPPKL1 and OsGSK3, the downstream components in BR signaling, as a scaffold protein, and inhibit the phosphatase activity of OsPPKL1 on the dephosphorylation of OsGSK3. In addition, the genetic evidence showed OsBSK3 acts upstream of OsPPKL1 in regulating grain length and weight. Our results clarify the role of OsBSK3 and provide new insights into BR-signaling mechanisms, leading to potential new targets for the genetic improvement of rice.
Collapse
|
33
|
Velay F, Soula M, Mehrez M, Belbachir C, D'Alessandro S, Laloi C, Crete P, Field B. MoBiFC: development of a modular bimolecular fluorescence complementation toolkit for the analysis of chloroplast protein-protein interactions. PLANT METHODS 2022; 18:69. [PMID: 35619173 PMCID: PMC9134606 DOI: 10.1186/s13007-022-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The bimolecular fluorescence complementation (BiFC) assay has emerged as one of the most popular methods for analysing protein-protein interactions (PPIs) in plant biology. This includes its increasing use as a tool for dissecting the molecular mechanisms of chloroplast function. However, the construction of chloroplast fusion proteins for BiFC can be difficult, and the availability and selection of appropriate controls is not trivial. Furthermore, the challenges of performing BiFC in restricted cellular compartments has not been specifically addressed. RESULTS Here we describe the development of a flexible modular cloning-based toolkit for BiFC (MoBiFC) and proximity labelling in the chloroplast and other cellular compartments using synthetic biology principles. We used pairs of chloroplast proteins previously shown to interact (HSP21/HSP21 and HSP21/PTAC5) and a negative control (HSP21/ΔPTAC5) to develop standardised Goldengate-compatible modules for the assembly of protein fusions with fluorescent protein (FP) fragments for BiFC expressed from a single multigenic T-DNA. Using synthetic biology principles and transient expression in Nicotiana benthamiana, we iteratively improved the approach by testing different FP fragments, promoters, reference FPs for ratiometric quantification, and cell types. A generic negative control (mCHERRY) was also tested, and modules for the identification of proximal proteins by Turbo-ID labelling were developed and validated. CONCLUSIONS MoBiFC facilitates the cloning process for organelle-targeted proteins, allows robust ratiometric quantification, and makes available model positive and negative controls. Development of MoBiFC underlines how Goldengate cloning approaches accelerate the development and enrichment of new toolsets, and highlights several potential pitfalls in designing BiFC experiments including the choice of FP split, negative controls, cell type, and reference FP. We discuss how MoBiFC could be further improved and extended to other compartments of the plant cell and to high throughput cloning approaches.
Collapse
Affiliation(s)
- Florent Velay
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Mélanie Soula
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Marwa Mehrez
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Clément Belbachir
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Stefano D'Alessandro
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
- Dipartimento Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10135, Torino, Italy
| | - Christophe Laloi
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Patrice Crete
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France.
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France.
| |
Collapse
|
34
|
Yan Y, Mintao S, Si M, Qian F, Yijia W, Qinghua D, Mengdi Z, Chaoxing H, Yansu L, Lihong G, Xianchang Y. Mechanism of CsGPA1 in regulating cold tolerance of cucumber. HORTICULTURE RESEARCH 2022; 9:uhac109. [PMID: 35821703 PMCID: PMC9265480 DOI: 10.1093/hr/uhac109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/22/2022] [Indexed: 06/01/2023]
Abstract
G proteins function directly in cold tolerance of plants. However, the framework of the Gα subunit in regulating cold tolerance remains to be explored. Here, we used protein interaction techniques to elucidate cold-related pathways regulated by CsGPA1. Suppression of CsGPA1 decreased the cold tolerance of cucumber. Further protein interaction experiments showed that CsGPA1 interacted with Csa_4G663630.1 located in the cell membrane and nucleus and with CsCOR413PM2 located in the cell membrane. Csa_4G663630.1 was named CsCDL1 due to its 71% protein sequence similarity to AtCDL1, a positive brassinolide signal gene. Suppression of CsGPA1 decreased the expression of most of brassinolide-related genes (including CsCDL1) under cold stress. Principal component and linear regression analyses showed that expressions of CsGPA1 and brassinolide-related genes were positively correlated. Suppression of CsCOR413PM2 also decreased cold tolerance of cucumber. The expression and protein content of CsCOR413PM2 and CsGPA1 in CsGPA1-RNAi and CsCOR413PM2-RNAi lines were determined under cold tolerance. Only CsGPA1 silencing affected the expression and protein content of CsCOR413PM2 during cold stress. Moreover, suppression of CsGPA1 or CsCOR413PM2 decreased Ca 2+ influx at low temperature and then decreased the expression of CsICE-CsCBF. These results indicated that the CsGPA1-CsCOR413PM2-Ca2+ axis regulated the expression of CsICE-CsCBF during cold stress. In conclusion, Our results provide the first framework of CsGPA1 in regulating cold tolerance of cucumber, laying the foundation for further mechanistic studies of cold tolerance for Gα in cucumber.
Collapse
Affiliation(s)
- Yan Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Sun Mintao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Ma Si
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Feng Qian
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Wang Yijia
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Di Qinghua
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Zhou Mengdi
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - He Chaoxing
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Li Yansu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| | - Gao Lihong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yu Xianchang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China
| |
Collapse
|
35
|
Ihara Y, Wakamatsu T, Yokoyama M, Maezawa D, Ohta H, Shimojima M. Developing a platform for production of the oxylipin KODA in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3044-3052. [PMID: 35560188 PMCID: PMC9113317 DOI: 10.1093/jxb/erab557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 05/08/2023]
Abstract
KODA (9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid) is a plant oxylipin involved in recovery from stress. As an agrichemical, KODA helps maintain crop production under various environmental stresses. In plants, KODA is synthesized from α-linolenic acids via 9-lipoxygenase (9-LOX) and allene oxide synthase (AOS), although the amount is usually low, except in the free-floating aquatic plant Lemna paucicostata. To improve KODA biosynthetic yield in other plants such as Nicotiana benthamiana and Arabidopsis thaliana, we developed a system to overproduce KODA in vivo via ectopic expression of L. paucicostata 9-LOX and AOS. The transient expression in N. benthamiana showed that the expression of these two genes is sufficient to produce KODA in leaves. However, stable expression of 9-LOX and AOS (with consequent KODA production) in Arabidopsis plants succeeded only when the two proteins were targeted to plastids or the endoplasmic reticulum/lipid droplets. Although only small amounts of KODA could be detected in crude leaf extracts of transgenic Nicotiana or Arabidopsis plants, subsequent incubation of the extracts increased KODA abundance over time. Therefore, KODA production in transgenic plants stably expressing 9-LOX and AOS requires specific sub-cellular localization of these two enzymes and incubation of crude leaf extracts, which liberates α-linolenic acid via breakdown of endogenous lipids.
Collapse
Affiliation(s)
- Yuta Ihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takayuki Wakamatsu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mineyuki Yokoyama
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
36
|
Wang J, Yu YC, Li Y, Chen LQ. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase. PLANT PHYSIOLOGY 2022; 189:388-401. [PMID: 35188197 PMCID: PMC9070816 DOI: 10.1093/plphys/kiac068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/15/2022] [Indexed: 05/12/2023]
Abstract
Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled, since excess galactose and its derivatives are inhibitory to plant growth. In Arabidopsis (Arabidopsis thaliana), root growth and pollen germination are strongly inhibited by excess galactose. However, the mechanism of galactose-induced inhibition during pollen germination remains obscure. In this study, we characterized a plasma membrane-localized transporter, Arabidopsis Sugars Will Eventually be Exported Transporter 5, that transports glucose and galactose. SWEET5 protein levels started to accumulate at the tricellular stage of pollen development and peaked in mature pollen, before rapidly declining after pollen germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity to galactose, and galactokinase is essential for these inhibitory effects during pollen germination. However, sugar measurement results indicate that galactose flux dynamics and sugar metabolism, rather than the steady-state galactose level, may explain phenotypic differences between sweet5 and Col-0 in galactose inhibition of pollen germination.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ya-Chi Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | | |
Collapse
|
37
|
Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. MOLECULAR PLANT 2022; 15:706-722. [PMID: 35093592 DOI: 10.1016/j.molp.2022.01.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Tre6P (trehalose-6-phosphate) mediates sensing of carbon availability to maintain sugar homeostasis in plants, which underpins crop yield and resilience. However, how Tre6P responds to fluctuations in sugar levels and regulates the utilization of sugars for growth remains to be addressed. Here, we report that the sugar-inducible rice NAC transcription factor OsNAC23 directly represses the transcription of the Tre6P phosphatase gene TPP1 to simultaneously elevate Tre6P and repress trehalose levels, thus facilitating carbon partitioning from source to sink organs. Meanwhile, OsNAC23 and Tre6P suppress the transcription and enzyme activity of SnRK1a, a low-carbon sensor and antagonist of OsNAC23, to prevent the SnRK1a-mediated phosphorylation and degradation of OsNAC23. Thus, OsNAC23, Tre6P, and SnRK1a form a feed-forward loop to sense sugar and maintain sugar homeostasis by transporting sugars to sink organs. Importantly, plants over-expressing OsNAC23 exhibited an elevated photosynthetic rate, sugar transport, and sink organ size, which consistently increased rice yields by 13%-17% in three elite-variety backgrounds and two locations, suggesting that manipulation of OsNAC23 expression has great potential for rice improvement. Collectively, these findings enhance our understanding of Tre6P-mediated sugar signaling and homeostasis, and provide a new strategy for genetic improvement of rice and possibly also other crops.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guiai Jiao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
38
|
He J, Zou LN, Pareek V, Benkovic SJ. Multienzyme interactions of the de novo purine biosynthetic protein PAICS facilitate purinosome formation and metabolic channeling. J Biol Chem 2022; 298:101853. [PMID: 35331738 PMCID: PMC9035706 DOI: 10.1016/j.jbc.2022.101853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/09/2023] Open
Abstract
There is growing evidence that mammalian cells deploy a mitochondria-associated metabolon called the purinosome to perform channeled de novo purine biosynthesis (DNPB). However, the molecular mechanisms of this substrate-channeling pathway are not well defined. Here, we present molecular evidence of protein-protein interactions (PPIs) between the human bifunctional phosphoribosylaminoimidazole carboxylase/succinocarboxamide synthetase (PAICS) and other known DNPB enzymes. We employed two orthogonal approaches: bimolecular fluorescence complementation, to probe PPIs inside live, intact cells, and co-immunoprecipitation using StrepTag-labeled PAICS that was reintegrated into the genome of PAICS-knockout HeLa cells (crPAICS). With the exception of amidophosphoribosyltransferase, the first enzyme of the DNPB pathway, we discovered PAICS interacts with all other known DNPB enzymes and with MTHFD1, an enzyme which supplies the 10-formyltetrahydrofolate cofactor essential for DNPB. We show these interactions are present in cells grown in both purine-depleted and purine-rich conditions, suggesting at least a partial assembly of these enzymes may be present regardless of the activity of the DNPB pathway. We also demonstrate that tagging of PAICS on its C terminus disrupts these interactions and that this disruption is correlated with disturbed DNPB activity. Finally, we show that crPAICS cells with reintegrated N-terminally tagged PAICS regained effective DNPB with metabolic signatures of channeled synthesis, whereas crPAICS cells that reintegrated C-terminally tagged PAICS exhibit reduced DNPB intermediate pools and a perturbed partitioning of inosine monophosphate into AMP and GMP. Our results provide molecular evidence in support of purinosomes and suggest perturbing PPIs between DNPB enzymes negatively impact metabolite flux through this important pathway.
Collapse
Affiliation(s)
- Jingxuan He
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ling-Nan Zou
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vidhi Pareek
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA,For correspondence: Stephen J. Benkovic
| |
Collapse
|
39
|
Navarrete F, Gallei M, Kornienko AE, Saado I, Khan M, Chia KS, Darino MA, Bindics J, Djamei A. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. PLANT COMMUNICATIONS 2022; 3:100269. [PMID: 35529945 PMCID: PMC9073326 DOI: 10.1016/j.xplc.2021.100269] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/21/2021] [Accepted: 11/21/2021] [Indexed: 05/05/2023]
Abstract
In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood. Ustilago maydis is a maize pathogen that induces auxin signaling in its host. We characterized a U. maydis effector protein, Naked1 (Nkd1), that is translocated into the host nucleus. Through its native ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related (TPL/TPRs) and prevents the recruitment of a transcriptional repressor involved in hormonal signaling, leading to the de-repression of auxin and jasmonate signaling and thereby promoting susceptibility to (hemi)biotrophic pathogens. A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species (ROS) burst, an early defense response. Thus, our findings establish a clear mechanism for auxin-induced pathogen susceptibility. Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions, leading to pathogen resistance. This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.
Collapse
Affiliation(s)
- Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michelle Gallei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Aleksandra E Kornienko
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Indira Saado
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Mamoona Khan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Khong-Sam Chia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Martin A Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| |
Collapse
|
40
|
Xu K, Song J, Wu Y, Zhuo C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Brassica evolution of essential BnaFtsH1 genes involved in the PSII repair cycle and loss of FtsH5. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111128. [PMID: 35067298 DOI: 10.1016/j.plantsci.2021.111128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/23/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
The PSII repair cycle is an important part of photosynthesis and is essential for high photosynthetic efficiency. The study of essential genes in Brassica napus provides significant potential for the improvement of gene editing technology and molecular breeding design. Previously, we identified a B. napus lethal mutant (7-521Y), which was controlled by two recessive genes (cyd1 and cyd2). BnaC06.FtsH1 was identified as a CYD1 target gene through functional verification. In the present study, we employed fine-mapping, genetic complementation, and CRISPR/Cas9 experiments to identify BnaA07.FtsH1 as the target gene of CYD2, functioning similarly to BnaC06.FtsH1. By analyzing CRISPR/Cas9 T1 generation plants of the Westar variety, we found that the copy number of FtsH1 was positively correlated with its biomass accumulation. Transcriptome analysis of cotyledons revealed differences in the expression of photosynthesis antenna and structural proteins between the mutant and complementary seedlings. Phylogenetic and chromosome linear analyses, based on 15 sequenced cruciferous species, revealed that Brassica alone had lost FtsH5 during evolution. This may be related to the fact that FtsH5 was located at the end of chromosome ABK8 in the ancestor species. Cloning and identification of BnaFtsH1s provide a deeper understanding of PSII repair cycle mechanisms and offer new insights for the improvement of photosynthetic efficiency and molecular breeding design in B. napus.
Collapse
Affiliation(s)
- Kai Xu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yujin Wu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chenjian Zhuo
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
41
|
Dong J, Hudson ME. WI12 Rhg1 interacts with DELLAs and mediates soybean cyst nematode resistance through hormone pathways. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:283-296. [PMID: 34532941 PMCID: PMC8753364 DOI: 10.1111/pbi.13709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/08/2021] [Accepted: 09/10/2021] [Indexed: 05/19/2023]
Abstract
The soybean cyst nematode (SCN) is one of the most important causes of soybean yield loss. The major source of genetic resistance to SCN is the Rhg1 repeat, a tandem copy number polymorphism of three genes. The roles of these genes are only partially understood. Moreover, nematode populations virulent on Rhg1-carrying soybeans are becoming more common, increasing the need to understand the most successful genetic resistance mechanism. Here, we show that a Rhg1-locus gene (Glyma.18G02270) encoding a wound-inducible protein (WI12Rhg1 ) is needed for SCN resistance. Furthermore, knockout of WI12Rhg1 reduces the expression of DELLA18, and the expression of WI12Rhg1 is itself induced by either JA, SA or GA. The content of the defence hormone SA is significantly lower whilst GA12 and GA53 are increased in WI12Rhg1 knockout roots compared with unedited hairy roots. We find that WI12Rhg1 directly interacts with DELLA18 (Glyma.18G040000) in yeast and plants and that double knockout of DELLA18 and its homeolog DELLA11 (Glyma.11G216500) significantly reduces SCN resistance and alters the root morphology. As DELLA proteins are implicated in hormone signalling, we explored the content of defence hormones (JA and SA) in DELLA knockout and unedited roots, finding reduced levels of JA and SA after the knockout of DELLA. Additionally, the treatment of DELLA-knockout roots with JA or SA rescues SCN resistance lost by the knockout. Meanwhile, the SCN resistance of unedited roots decreases after the treatment with GA, but increases with JA or SA. Our findings highlight the critical roles of WI12Rhg1 and DELLA proteins in SCN resistance through interconnection with hormone signalling.
Collapse
Affiliation(s)
- Jia Dong
- Department of Crop SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Matthew E. Hudson
- Department of Crop SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
42
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
43
|
Bian S, Sui X, Wang J, Tian T, Wang C, Zhao X, Liu X, Fang N, Zhang Y, Liu Y, Du Y, Wang B, Timko MP, Zhang Z, Zhang H. NtMYB305a binds to the jasmonate-responsive GAG region of NtPMT1a promoter to regulate nicotine biosynthesis. PLANT PHYSIOLOGY 2022; 188:151-166. [PMID: 34601578 PMCID: PMC8774768 DOI: 10.1093/plphys/kiab458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/02/2023]
Abstract
MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter. Yeast one-hybrid analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed that NtMYB305a binds to the GAG region in vitro and in vivo. Binding specifically occurs at the ∼30-bp AT-rich motif in a G/C-base-independent manner, thus defining the AT-rich motif as previously unknown MYB-binding element. NtMYB305a localized in the nucleus of tobacco cells where it is capable of activating the expression of a 4×GAG-driven GUS reporter in an AT-rich motif-dependent manner. NtMYB305a positively regulates nicotine biosynthesis and the expression of NtPMT and other nicotine pathway genes. NtMYB305a acts synergistically with NtMYC2a to regulate nicotine biosynthesis, but no interaction between these two proteins was detected. This identification of NtMYB305a provides insights into the regulation of nicotine biosynthesis and extends the roles played by MYB transcription factors in plant secondary metabolism.
Collapse
Affiliation(s)
- Shiquan Bian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jiahao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tian Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chunkai Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xue Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaofeng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ning Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yu Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
44
|
Tang Z, Bernards MA, Wang A. Simultaneous Determination and Subcellular Localization of Protein-Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation Assay. Methods Mol Biol 2022; 2400:75-85. [PMID: 34905192 DOI: 10.1007/978-1-0716-1835-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay allows the visualization of protein-protein interactions in their native state within living systems. The BiFC assay is based on the in vivo complementation of nonfluorescent component parts of a fluorescent protein through the interaction or proximity target proteins, each fused to a different component of the fluorescent protein. Expansion of the BiFC toolkit with an increasing spectrum of fluorescence markers and catalog of Gateway-compatible vectors for high-throughput screening, has made BiFC an exceedingly powerful tool in discovering new protein interactions or providing backup evidence for known ones. Apart from the validation of protein-protein interactions, BiFC offers the additional benefit of providing information on the subcellular localization of protein interaction complexes. Subcellular localization to a specific subcellular compartment or organelle may be further validated by the coexpression of a fluorescence-labeled protein marker. Here we describe an efficient yet simple protocol for simultaneous determination and subcellular localization of protein-protein interactions in plant cells.
Collapse
Affiliation(s)
- Ziwei Tang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Mark A Bernards
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aiming Wang
- Department of Biology, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
45
|
Waki T, Terashita M, Fujita N, Fukuda K, Kato M, Negishi T, Uchida H, Aoki Y, Takahashi S, Nakayama T. Identification of the Genes Coding for Carthamin Synthase, Peroxidase Homologs that Catalyze the Final Enzymatic Step of Red Pigmentation in Safflower (Carthamus tinctorius L.). PLANT & CELL PHYSIOLOGY 2021; 62:1528-1541. [PMID: 34343331 DOI: 10.1093/pcp/pcab122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Carthamin, a dimeric quinochalcone that is sparingly soluble in water, is obtained from the yellow-orange corolla of fully blooming safflower (Carthamus tinctorius L.) florets. Carthamin is a natural red colorant, which has been used worldwide for more than 4500 years and is the major component of Japanese 'beni' used for dyeing textiles, in cosmetics and as a food colorant. The biosynthetic pathway of carthamin has long remained uncertain. Previously, carthamin was proposed to be derived from precarthamin (PC), a water-soluble quinochalcone, via a single enzymatic process. In this study, we identified the genes coding for the enzyme responsible for the formation of carthamin from PC, termed 'carthamin synthase' (CarS), using enzyme purification and transcriptome analysis. The CarS proteins were purified from the cream-colored corolla of safflower and identified as peroxidase homologs (CtPOD1, CtPOD2 and CtPOD3). The purified enzyme catalyzed the oxidative decarboxylation of PC to produce carthamin using O2, instead of H2O2, as an electron acceptor. In addition, CarS catalyzed the decomposition of carthamin. However, this enzymatic decomposition of carthamin could be circumvented by adsorption of the pigment to cellulose. These CtPOD isozymes were not only expressed in the corolla of the carthamin-producing orange safflower cultivars but were also abundantly expressed in tissues and organs that did not produce carthamin and PC. One CtPOD isozyme, CtPOD2, was localized in the extracellular space. Based on the results obtained, a model for the stable red pigmentation of safflower florets during flower senescence and the traditional 'beni' manufacturing process is proposed.
Collapse
Affiliation(s)
- Toshiyuki Waki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi 980-8579, Japan
| | - Miho Terashita
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi 980-8579, Japan
| | - Naoki Fujita
- Production Technology Laboratory, Production-Logistics Division, Toyo Ink SC Holdings Co., Ltd, 1, Sakae, Kawagoe, Saitama 350-0803, Japan
| | - Keishi Fukuda
- Production Technology Laboratory, Production-Logistics Division, Toyo Ink SC Holdings Co., Ltd, 1, Sakae, Kawagoe, Saitama 350-0803, Japan
| | - Mikiya Kato
- Production Technology Laboratory, Production-Logistics Division, Toyo Ink SC Holdings Co., Ltd, 1, Sakae, Kawagoe, Saitama 350-0803, Japan
| | - Takashi Negishi
- Living & Healthcare Division, ADL Business Unit, TOYOCHEM Co., Ltd, 2-1, Kyobashi 2-chome, Chuo-ku, Tokyo 104-8379, Japan
| | - Hiromi Uchida
- Living & Healthcare Division, ADL Business Unit, TOYOCHEM Co., Ltd, 2-1, Kyobashi 2-chome, Chuo-ku, Tokyo 104-8379, Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Seiryo 2-1, Sendai, Miyagi 980-8573, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi 980-8579, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
46
|
Kocourková D, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 Acts as a Negative Regulator of High Mg 2+-Induced Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:770794. [PMID: 34899793 PMCID: PMC8656112 DOI: 10.3389/fpls.2021.770794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/26/2021] [Indexed: 05/16/2023]
Abstract
Magnesium (Mg2+) is a macronutrient involved in essential cellular processes. Its deficiency or excess is a stress factor for plants, seriously affecting their growth and development and therefore, its accurate regulation is essential. Recently, we discovered that phospholipase Dα1 (PLDα1) activity is vital in the stress response to high-magnesium conditions in Arabidopsis roots. This study shows that PLDα1 acts as a negative regulator of high-Mg2+-induced leaf senescence in Arabidopsis. The level of phosphatidic acid produced by PLDα1 and the amount of PLDα1 in the leaves increase in plants treated with high Mg2+. A knockout mutant of PLDα1 (pldα1-1), exhibits premature leaf senescence under high-Mg2+ conditions. In pldα1-1 plants, higher accumulation of abscisic and jasmonic acid (JA) and impaired magnesium, potassium and phosphate homeostasis were observed under high-Mg2+ conditions. High Mg2+ also led to an increase of starch and proline content in Arabidopsis plants. While the starch content was higher in pldα1-1 plants, proline content was significantly lower in pldα1-1 compared with wild type plants. Our results show that PLDα1 is essential for Arabidopsis plants to cope with the pleiotropic effects of high-Mg2+ stress and delay the leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
47
|
Guo T, Weber H, Niemann MCE, Theisl L, Leonte G, Novák O, Werner T. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. MOLECULAR PLANT 2021; 14:1918-1934. [PMID: 34314894 DOI: 10.1016/j.molp.2021.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Eukaryotic organisms are equipped with quality-control mechanisms that survey protein folding in the endoplasmic reticulum (ER) and remove non-native proteins by ER-associated degradation (ERAD). Recent research has shown that cytokinin-degrading CKX proteins are subjected to ERAD during plant development. The mechanisms of plant ERAD, including the export of substrate proteins from the ER, are not fully understood, and the molecular components involved in the ERAD of CKX are unknown. Here, we show that heavy metal-associated isoprenylated plant proteins (HIPPs) interact specifically with CKX proteins synthesized in the ER and processed by ERAD. CKX-HIPP protein complexes were detected at the ER as well as in the cytosol, suggesting that the complexes involve retrotranslocated CKX protein species. Altered CKX levels in HIPP-overexpressing and higher-order hipp mutant plants suggest that the studied HIPPs control the ERAD of CKX. Deregulation of CKX proteins caused corresponding changes in the cytokinin signaling activity and triggered typical morphological cytokinin responses. Notably, transcriptional repression of HIPP genes by cytokinin indicates a feedback regulatory mechanism of cytokinin homeostasis and signaling responses. Moreover, loss of function of HIPP genes constitutively activates the unfolded protein response and compromises the ER stress tolerance. Collectively, these results suggests that HIPPs represent novel functional components of plant ERAD.
Collapse
Affiliation(s)
- Tianqi Guo
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, 514015 Mei Zhou, China
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Lisa Theisl
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Tomáš Werner
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria.
| |
Collapse
|
48
|
VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111603. [PMID: 34769031 PMCID: PMC8584032 DOI: 10.3390/ijms222111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are the most important proteins in mitochondria. They localize to the outer mitochondrial membrane and contribute to the metabolite transport between the mitochondria and cytoplasm, which aids plant growth regulation. Here, we report that Arabidopsis thaliana VDAC1 is involved in the floral transition, with the loss of AtVDAC1 function, resulting in an early-flowering phenotype. AtVDAC1 is expressed ubiquitously in Arabidopsis. To identify the flowering pathway integrators that may be responsible for AtVDAC1′s function during the floral transition, an RNA-seq analysis was performed. In total, 106 differentially expressed genes (DEGs) were identified between wild-type and atvdac1-5 mutant seedlings. However, none were involved in flowering-related pathways. In contrast, AtVDAC1 physically associated with FLOWERING LOCUS T. Thus, in the floral transition, AtVDAC1 may function partly through the FLOWERING LOCUS T protein.
Collapse
|
49
|
Brunetti SC, Arseneault MKM, Wright JA, Wang Z, Ehdaeivand MR, Lowden MJ, Rivoal J, Khalil HB, Garg G, Gulick PJ. The stress induced caleosin, RD20/CLO3, acts as a negative regulator of GPA1 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 107:159-175. [PMID: 34599731 DOI: 10.1007/s11103-021-01189-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A stress induced calcium-binding protein, RD20/CLO3 interacts with the alpha subunit of the heterotrimeric G-protein complex in Arabidopsis and affects etiolation and leaf morphology. Heterotrimeric G proteins and calcium signaling have both been shown to play a role in the response to environmental abiotic stress in plants; however, the interaction between calcium-binding proteins and G-protein signaling molecules remains elusive. We investigated the interaction between the alpha subunit of the heterotrimeric G-protein complex, GPA1, of Arabidopsis thaliana with the calcium-binding protein, the caleosin RD20/CLO3, a gene strongly induced by drought, salt and abscisic acid. The proteins were found to interact in vivo by bimolecular fluorescent complementation (BiFC); the interaction was localized to the endoplasmic reticulum and to oil bodies within the cell. The constitutively GTP-bound GPA1 (GPA1QL) also interacts with RD20/CLO3 as well as its EF-hand mutant variations and these interactions are localized to the plasma membrane. The N-terminal portion of RD20/CLO3 was found to be responsible for the interaction with GPA1 and GPA1QL using both BiFC and yeast two-hybrid assays. RD20/CLO3 contains a single calcium-binding EF-hand in the N-terminal portion of the protein; disruption of the calcium-binding capacity of the protein obliterates interaction with GPA1 in in vivo assays and decreases the interaction between the caleosin and the constitutively active GPA1QL. Analysis of rd20/clo3 mutants shows that RD20/CLO3 plays a key role in the signaling pathway controlling hypocotyl length in dark grown seedlings and in leaf morphology. Our findings indicate a novel role for RD20/CLO3 as a negative regulator of GPA1.
Collapse
Affiliation(s)
- Sabrina C Brunetti
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Michelle K M Arseneault
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Justin A Wright
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Zhejun Wang
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | | | - Michael J Lowden
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Hala B Khalil
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
- Department of Genetics, Faculty of Agriculture, Ain-Shams University, Shoubra El-khema, Cairo, Egypt
| | - Gajra Garg
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
- Department of Biotechnology & Microbiology, Mahatma Jyoti Rao Phoole University, Jaipur, Rajasthan, India
| | - Patrick J Gulick
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
50
|
Jin Q, Yin S, Li G, Guo T, Wan M, Li H, Li J, Ge X, King GJ, Li Z, Wang J, Zhou G. Functional homoeologous alleles of CONSTANS contribute to seasonal crop type in rapeseed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3287-3303. [PMID: 34410456 DOI: 10.1007/s00122-021-03896-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Two CO paralogs in Brassica napus were confirmed and shown distinct expression pattern and function in promoting flowering and allelic variation s within BnaCO.A10 were found closely associated with ecotype divergence. CONSTANS (CO) is a key gene that responds to photoperiod and in Arabidopsis can promote flowering under long-day (LD) conditions. Brassica napus L. is a major oil crop and close relative of Arabidopsis, and arose via allopolyploidization from the diploids B. rapa (A genome) and B. oleracea (C genome). In this study, we confirmed that B. napus has two CO genes located on the A10 (BnaCO.A10) and C9 (BnaCO.C9) chromosomes. Significant differences in level and temporal pattern of transcription, as well as in protein function, of these homoeologous may have resulted from sequence variation in the promoter as well as in the coding region. Apart from two insertions of 527 bp and 2002 bp in the promoter of BnaCO.C9 that function as transcriptional enhancers, this gene is otherwise highly conserved in both promoter and coding region. However, BnaCO.A10 was classified into two haplotypes and transgene analysis in Arabidopsis and backcross analysis in rapeseed indicated that the winter-type haplotype had a greater effect in promoting flowering than the spring type. We discuss the contribution of CO alleles to species evolution, and for eco-geographic radiation following crop domestication, alongside scope for managing this locus in future breeding.
Collapse
Affiliation(s)
- Qingdong Jin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Yin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Wan
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Juanjuan Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|