1
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
2
|
Liu J, Dong L, Duan R, Hu L, Zhao Y, Zhang L, Wang X. Transcriptomic Analysis Reveals the Regulatory Networks and Hub Genes Controlling the Unsaturated Fatty Acid Contents of Developing Seed in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:876371. [PMID: 35646018 PMCID: PMC9134122 DOI: 10.3389/fpls.2022.876371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important crops, which produces about 25% of the world's edible oil. The nutritional value of soybean oil depends mostly on the relative contents of three unsaturated fatty acids (UFAs), i.e., oleic acid, linoleic acid (LA), and linolenic acid. However, the biosynthetic mechanism of UFAs remains largely unknown, and there are few studies on RNA-seq analysis of developing seeds. To identify the candidate genes and related pathways involved in the regulation of UFA contents during seed development in soybean, two soybean lines with different UFA profiles were selected from 314 cultivars and landraces originated from Southern China, and RNA-seq analysis was performed in soybean seeds at three developmental stages. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a series of genes and pathways related to fatty acid metabolism were identified, and 40 days after flowering (DAF) was found to be the crucial period in the formation of UFA profiles. Further, weighted gene co-expression network analysis identified three modules with six genes whose functions were highly associated with the contents of oleic and LA. The detailed functional investigation of the networks and hub genes could further improve the understanding of the underlying molecular mechanism of UFA contents and might provide some ideas for the improvement in fatty acids profiles in soybean.
Collapse
Affiliation(s)
- Junqi Liu
- School of Agriculture, Yunnan University, Kunming, China
| | - Liang Dong
- School of Agriculture, Yunnan University, Kunming, China
| | - Runqing Duan
- School of Agriculture, Yunnan University, Kunming, China
| | - Li Hu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yinyue Zhao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Liang Zhang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xianzhi Wang
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Yan M, Jin X, Liu Y, Chen H, Ye T, Hou Z, Su Z, Chen Y, Aslam M, Qin Y, Niu X. Identification and evaluation of the novel genes for transcript normalization during female gametophyte development in sugarcane. PeerJ 2021; 9:e12298. [PMID: 34721982 PMCID: PMC8532975 DOI: 10.7717/peerj.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Sugarcane (Saccharum spontaneum L.), the major sugar and biofuel feedstock crop, is cultivated mainly by vegetative propagation worldwide due to the infertility of female reproductive organs resulting in the reduction of quality and output of sugar. Deciphering the gene expression profile during ovule development will improve our understanding of the complications underlying sexual reproduction in sugarcane. Optimal reference genes are essential for elucidating the expression pattern of a given gene by quantitative real-time PCR (qRT-PCR). Method In this study, based on transcriptome data obtained from sugarcane ovule, eighteen candidate reference genes were identified, cloned, and their expression levels were evaluated across five developmental stages ovule (AC, MMC, Meiosis, Mitosis, and Mature). Results Our results indicated that FAB2 and MOR1 were the most stably expressed genes during sugarcane female gametophyte development. Moreover, two genes, cell cycle-related genes REC8 and CDK, were selected, and their feasibility was validated. This study provides important insights into the female gametophyte development of sugarcane and reports novel reference genes for gene expression research on sugarcane sexual reproduction.
Collapse
Affiliation(s)
- Maokai Yan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xingyue Jin
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Yanhui Liu
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Huihuang Chen
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Tao Ye
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Zhimin Hou
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Zhenxia Su
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Yingzhi Chen
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.,Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Xiaoping Niu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
5
|
Usman B, Zhao N, Nawaz G, Qin B, Liu F, Liu Y, Li R. CRISPR/Cas9 Guided Mutagenesis of Grain Size 3 Confers Increased Rice ( Oryza sativa L.) Grain Length by Regulating Cysteine Proteinase Inhibitor and Ubiquitin-Related Proteins. Int J Mol Sci 2021; 22:ijms22063225. [PMID: 33810044 PMCID: PMC8004693 DOI: 10.3390/ijms22063225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/21/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9)-mediated genome editing has become an important way for molecular breeding in crop plants. To promote rice breeding, we edited the Grain Size 3 (GS3) gene for obtaining valuable and stable long-grain rice mutants. Furthermore, isobaric tags for the relative and absolute quantitation (iTRAQ)-based proteomic method were applied to determine the proteome-wide changes in the GS3 mutants compared with wild type (WT). Two target sites were designed to construct the vector, and the Agrobacterium-mediated method was used for rice transformation. Specific mutations were successfully introduced, and the grain length (GL) and 1000-grain weight (GWT) of the mutants were increased by 31.39% and 27.15%, respectively, compared with WT. The iTRAQ-based proteomic analysis revealed that a total of 31 proteins were differentially expressed in the GS3 mutants, including 20 up-regulated and 11 down-regulated proteins. Results showed that differentially expressed proteins (DEPs) were mainly related to cysteine synthase, cysteine proteinase inhibitor, vacuolar protein sorting-associated, ubiquitin, and DNA ligase. Furthermore, functional analysis revealed that DEPs were mostly enriched in cellular process, metabolic process, binding, transmembrane, structural, and catalytic activities. Pathway enrichment analysis revealed that DEPs were mainly involved in lipid metabolism and oxylipin biosynthesis. The protein-to-protein interaction (PPI) network found that proteins related to DNA damage-binding, ubiquitin-40S ribosomal, and cysteine proteinase inhibitor showed a higher degree of interaction. The homozygous mutant lines featured by stable inheritance and long-grain phenotype were obtained using the CRISPR/Cas9 system. This study provides a convenient and effective way of improving grain yield, which could significantly accelerate the breeding process of long-grain japonica parents and promote the development of high-yielding rice.
Collapse
Affiliation(s)
- Babar Usman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Gul Nawaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| |
Collapse
|
6
|
Lakhssassi N, Zhou Z, Liu S, Piya S, Cullen MA, El Baze A, Knizia D, Patil GB, Badad O, Embaby MG, Meksem J, Lakhssassi A, AbuGhazaleh A, Hewezi T, Meksem K. Soybean TILLING-by-Sequencing+ reveals the role of novel GmSACPD members in unsaturated fatty acid biosynthesis while maintaining healthy nodules. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6969-6987. [PMID: 32898219 DOI: 10.1093/jxb/eraa402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Developing soybean lines with high levels of stearic acid is a primary goal of the soybean industry. Most high-stearic-acid soybeans carry different GmSACPD-C mutated alleles. However, due to the dual role of GmSACPD-C in seeds and nodule development, all derived deleterious GmSACPD-C mutant alleles are of extremely poor agronomic value because of defective nodulation. The soybean stearoyl-acyl carrier protein desaturase (GmSACPD) gene family is composed of five members. Comparative genomics analysis indicated that SACPD genes were duplicated and derived from a common ancestor that is still present in chlorophytic algae. Synteny analysis showed the presence of segment duplications between GmSACPD-A/GmSACPD-B, and GmSACPD-C/GmSACPD-D. GmSACPD-E was not contained in any duplicated segment and may be the result of tandem duplication. We developed a TILLING by Target Capture Sequencing (Tilling-by-Sequencing+) technology, a versatile extension of the conventional TILLING by sequencing, and successfully identified 12, 14, and 18 ethyl methanesulfonate mutants at the GmSACPD-A, GmSACPD-B, and GmSACPD-D genes, respectively. Functional analysis of all identified mutants revealed an unprecedented role of GmSACPD-A, GmSACPD-B, and GmSACPD-D in unsaturated fatty acid biosynthesis without affecting nodule development and structure. This discovery will positively impact the development of high-stearic-acid lines to enhance soybean nutritional value without potential developmental tradeoffs.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mallory A Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Gunvant B Patil
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Oussama Badad
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Mohamed G Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, Nancy, France
| | - Amer AbuGhazaleh
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
7
|
Liu B, Sun Y, Hang W, Wang X, Xue J, Ma R, Jia X, Li R. Characterization of a Novel Acyl-ACP Δ 9 Desaturase Gene Responsible for Palmitoleic Acid Accumulation in a Diatom Phaeodactylum tricornutum. Front Microbiol 2020; 11:584589. [PMID: 33391203 PMCID: PMC7772203 DOI: 10.3389/fmicb.2020.584589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitoleic acid (16:1Δ9) possesses a double bond at the seventh carbon atom from methyl end of the acyl chain and belongs to unusual ω-7 monounsaturated fatty acids with broad applications in food, pharmaceuticals, cosmetics, biofuel, and other industries. This high-value fatty acid accumulates up to >40% of total lipid in the marine diatom Phaeodactylum tricornutum. The present study was conducted to determine the key gene responsible for 16:1Δ9 biosynthesis in this unicellular alga. A new full-length cDNA and genomic DNA encoding acyl-ACP Δ9 desaturase (PtAAD) were isolated from P. tricornutum cells. Expression levels of PtAAD gene under normal and stress culture conditions were both positively correlated with 16:1Δ9 accumulation, implying its potential role for fatty acid determination. Functional complementation assay of a yeast mutant strain BY4839 evidenced that PtAAD could restore the synthesis of unsaturated fatty acid, especially generating high levels of 16:1Δ9. Further transient expression of PtAAD gene in Nicotiana benthamiana leaves was accompanied by the accumulation of 16:1Δ9, which was absent from control groups. Three-dimensional structure modeling studies showed that functional domain of PtAAD contained three variant amino acids (F160, A223, and L156), which may narrow the space shape of substrate-binding cavity to ensure the entry of 16:0-ACP. Consistent with this prediction, the mutated version of PtAAD gene (F160L, A223T, and L156M) in N. benthamiana systems failed to accumulate 16:1Δ9, but increased levels of 18:1Δ9. Taken together, PtAAD exhibits a strong enzymatic activity and substrate preference for 16:0-ACP, acting as the key player for high biosynthesis and accumulation of 16:1Δ9 in this alga. These findings provide new insights for better understanding the palmitoleic acid and oil biosynthetic mechanism in P. tricornutum, indicating that PtAAD gene may have practical applications for enriching palmitoleic acid and oil yield in other commercial oleaginous algae and crops.
Collapse
Affiliation(s)
- Baoling Liu
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China.,College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Yan Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaodan Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyun Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
8
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
9
|
Kumar S, Dhembla C, P H, Sundd M, Patel AK. Differential expression of structural and functional proteins during bean common mosaic virus-host plant interaction. Microb Pathog 2019; 138:103812. [PMID: 31669830 DOI: 10.1016/j.micpath.2019.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Bean common mosaic virus (BCMV), the most common seed-borne pathogen in Phaseolus vulgaris L. is known to cause severe loss in productivity across the globe. In the present study, proteomic analyses were performed for leaf samples from control (healthy) and susceptible BCMV infected plants. The differential expression of proteins was evaluated using two-dimensional gel electrophoresis (2-DE). Approximately, 1098 proteins were spotted, amongst which 107 proteins were observed to be statistically significant with differential expression. The functional categorization of the differential proteins illustrated that they were involved in biotic/abiotic stress (18%), energy and carbon metabolism (11%), photosynthesis (46%), protein biosynthesis (10%), chaperoning (5%), chlorophyll (5%) and polyunsaturated fatty acid biosynthesis (5%). This is the first report on the comparative proteome study of compatible plant-BCMV interactions in P. vulgaris which contributes largely to the understanding of protein-mediated disease resistance/susceptible mechanisms.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Chetna Dhembla
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
10
|
Jin H, Liu S, Zenda T, Wang X, Liu G, Duan H. Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage. PLoS One 2019; 14:e0223786. [PMID: 31665169 PMCID: PMC6821100 DOI: 10.1371/journal.pone.0223786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023] Open
Abstract
Like other important cereal crop in modern agricultural production, maize is also threatened by drought. And the drought stress during maize filling stage will directly affect the quality (protein or oil concentration) and also the weight of grain. Therefore, different from previous studies focusing on inbred lines and pot experiment at seedling stage, current study selected filling stage of the adult plant and planting maize in the experimental field. Two hybrids cultivars with different drought tolerant were used for drought and water treatment respectively. We performed transcriptome sequencing analysis of 4 groups, 12 samples, and obtained 651.08 million raw reads. Then the data were further processed by mapping to a reference genome, GO annotation, enrichment analysis and so on. Among them we focus on the different change trends of water treatment and drought treatment, and the different responses of two drought-tolerant cultivars to drought treatment. Through the analysis, several transcripts which encode nitrogen metabolic, protein phosphorylation, MYB,AP2/ERF, HB transcriptional factor, O-glycosyl hydrolases and organic acid metabolic process were implicated with maize drought stress. Our data will offer insights of the identification of genes involved in maize drought stress tolerance, which provides a theoretical basis for maize drought resistance breeding.
Collapse
Affiliation(s)
- Hongyu Jin
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xuan Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Guo Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
- * E-mail:
| |
Collapse
|
11
|
Liu B, Sun Y, Xue J, Mao X, Jia X, Li R. Stearoyl-ACP Δ 9 Desaturase 6 and 8 (GhA-SAD6 and GhD-SAD8) Are Responsible for Biosynthesis of Palmitoleic Acid Specifically in Developing Endosperm of Upland Cotton Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:703. [PMID: 31214221 PMCID: PMC6554319 DOI: 10.3389/fpls.2019.00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/13/2019] [Indexed: 05/06/2023]
Abstract
Palmitoleic acid (16:1Δ9) is one kind of ω-7 fatty acids (ω-7 FAs) widely used in food, nutraceutical and industry. However, such high-valued ω-7 FA only has a trace level in mature seeds of cotton and other common oil crops. We found that palmitoleic acid (>10.58 Mol%) was specially enriched in developing cotton endosperm which is disappeared in its mature seed. The present study was conducted to investigate the mechanism underlying high accumulation of palmitoleic acid in developing endosperm but not in embryo of upland cotton (Gossypium hirsutum L.) seed. Of 17 stearoyl-ACP Δ9 desaturases (SAD) gene family members identified in upland cotton, six GhSADs may specifically work in the desaturation of palmitic acid (16:0-ACP) to produce palmitoleic acid (16:1Δ9-ACP), which were revealed by examining the key amino acids in the catalytic center and their cis-elements. Gene expression analysis showed that spatial patterns of these GhSADs were different in developing ovules, with GhA-SAD6 and GhD-SAD8 preferentially expressed in developing endosperms. Functional analysis by transient expression in Nicotiana benthamiana leaves and genetic complementary assay using yeast mutant BY4389 strain unable to synthesize unsaturated fatty acids demonstrated that GhA-SAD6 and GhD-SAD8 have strong substrate specificity for 16:0-ACP. In contrast, GhA-SAD5 and GhA-SAD7 exhibited high specific activity on 18:0-ACP. Taken together, these data evidence that GhA-SAD6 and GhD-SAD8 are responsible for making palmitoleic acid in developing cotton endosperms, and provide endogenous gene targets for genetic modification to enrich ω-7 FAs in cotton seed oil required for sustainable production of functionality-valued products.
Collapse
|
12
|
Zhang Y, Maximova SN, Guiltinan MJ. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. FRONTIERS IN PLANT SCIENCE 2015; 6:239. [PMID: 25926841 PMCID: PMC4396352 DOI: 10.3389/fpls.2015.00239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/25/2015] [Indexed: 05/07/2023]
Abstract
In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.
Collapse
Affiliation(s)
- Yufan Zhang
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Siela N. Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Mark J. Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
- *Correspondence: Mark J. Guiltinan, Huck Institutes of the Life Sciences, Department of Plant Science, The Pennsylvania State University, University Park, 422 Life Sciences Building, PA 16802, USA
| |
Collapse
|