1
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
2
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 873] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Nguyen QT, Kisiala A, Andreas P, Neil Emery R, Narine S. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions. Curr Genomics 2016; 17:241-60. [PMID: 27252591 PMCID: PMC4869011 DOI: 10.2174/1389202917666160202220238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022] Open
Abstract
Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds.
Collapse
Affiliation(s)
- Quoc Thien. Nguyen
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario,Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R.J. Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Suresh Narine
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough,Ontario, Canada
| |
Collapse
|
4
|
De Marchis F, Valeri MC, Pompa A, Bouveret E, Alagna F, Grisan S, Stanzione V, Mariotti R, Cultrera N, Baldoni L, Bellucci M. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves. Transgenic Res 2016; 25:45-61. [PMID: 26560313 DOI: 10.1007/s11248-015-9919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/05/2015] [Indexed: 01/24/2023]
Abstract
Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3.
Collapse
Affiliation(s)
- Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Maria Cristina Valeri
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | | | - Fiammetta Alagna
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
- Research Unit for Table Grapes and Wine Growing in Mediterranean Environment, CREA, Via Casamassima 148, Turi, 70010, Bari, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Vitale Stanzione
- Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Research Division of Perugia, CNR, Via Madonna Alta 128, 06128, Perugia, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Nicolò Cultrera
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), Research Division of Perugia, CNR, Via Madonna Alta 130, 06128, Perugia, Italy.
| |
Collapse
|
5
|
Bellucci M, De Marchis F, Ferradini N, Pompa A, Veronesi F, Rosellini D. A mutant Synechococcus gene encoding glutamate 1-semialdehyde aminotransferase confers gabaculine resistance when expressed in tobacco plastids. PLANT CELL REPORTS 2015; 34:2127-36. [PMID: 26265112 DOI: 10.1007/s00299-015-1856-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE A mutant glutamate 1-semialdehyde aminotransferase gene from the Synechococcus , inserted into tobacco plastid DNA by means of particle bombardment and antibiotic selection, conferred gabaculine resistance allowing to attain homoplasmy. Many plant species are recalcitrant to plastid genome transformation. New selections systems may help to overcome this limitation and to extend the application of this technology. A mutant hemL gene from the photosynthetic cyanobacterium Synechococcus, encoding a gabaculine-insensitive glutamate 1-semialdehyde aminotransferase (GSA), is an efficient selectable marker gene for nuclear transformation of tobacco, alfalfa and durum wheat. Since GSA functions in the plastid, we introduced the mutant hemL gene into the tobacco plastid genome along with the conventional antibiotic resistance aadA gene, in the attempt to develop a new selection system for plastome transformation. Although we were unable to directly regenerate gabaculine resistant transplastomic plants, we demonstrated the functionality of hemL in tobacco plastids by using gabaculine selection in the second and third rounds of in vitro selection that permitted to obtain the homoplasmic state in transgenic plants. Thus, the mutant hemL gene functions as a secondary selection marker in tobacco plastids. Our results encourage further attempts to test gabaculine resistant GSA for plastome transformation of crop plants in which gabaculine has stronger regeneration-inhibiting effects with respect to tobacco.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128, Perugia, Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128, Perugia, Italy
| | - Nicoletta Ferradini
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Andrea Pompa
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128, Perugia, Italy
| | - Fabio Veronesi
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Daniele Rosellini
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| |
Collapse
|
6
|
Jin S, Daniell H. The Engineered Chloroplast Genome Just Got Smarter. TRENDS IN PLANT SCIENCE 2015; 20:622-640. [PMID: 26440432 PMCID: PMC4606472 DOI: 10.1016/j.tplants.2015.07.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/18/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Chloroplasts are known to sustain life on earth by providing food, fuel, and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for the production of industrial enzymes, biopharmaceuticals, bioproducts, or vaccines. The recent breakthrough in hyperexpression of biopharmaceuticals in edible leaves has facilitated progression to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes.
Collapse
Affiliation(s)
- Shuangxia Jin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|