1
|
Zhang Y, Liu H, Wang Y, Si X, Pan Y, Guo M, Wu M, Li Y, Liu H, Zhang X, Hou J, Li T, Hao C. TaFT-D1 positively regulates grain weight by acting as a coactivator of TaFDL2 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40100647 DOI: 10.1111/pbi.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
FLOWERING LOCUS T (FT), a multifunctional regulator in crops, modulates multiple key agronomic traits such as flowering time or heading date and plant height; however, its role in grain development regulation is unclear. Herein, through genome-wide association studies (GWAS), we identified TaFT-D1, which encodes a phosphatidylethanolamine-binding protein (PEBP), as a candidate gene for grain weight in wheat. A one-bp insertion/deletion (InDel) (G/-) in the third exon of TaFT-D1, resulting in different protein lengths, was significantly associated with grain weight. TaFT-D1 knockout via the CRISPR-Cas9 system reduced grain size and weight, and TaFT-D1 increased grain size by promoting cell proliferation and starch synthesis. Transcriptome analysis revealed a significant decrease in the expression of cell cycle- and starch synthesis-related genes, including TaNAC019-3A, TaSWEET15-like-7B, TaCYCD4;1 and TaCYCD3;2, in the taft-d1 knockout line. TaFT-D1 interacted with the bZIP transcription factor TaFDL2, and the tafdl2 mutant presented relatively small grains, suggesting that TaFDL2 is a positive regulator of grain size. Moreover, TaFDL2 bound to the promoters of downstream cell cycle- and starch synthesis-related genes, activating their expression, whereas TaFT-D1 increased this activation via TaFDL2. Interaction assays demonstrated that TaFT-D1, Ta14-3-3A and TaFDL2 formed a regulatory complex. Furthermore, the TaFT-D1(G) allele was significantly correlated with greater thousand-grain weight and earlier heading. This favourable allele has undergone strong positive selection during wheat breeding in China. Our findings provide novel insights into how TaFT-D1 regulates grain weight and highlight its potential application for yield improvement in wheat.
Collapse
Affiliation(s)
- Yinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaojia Wang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Si
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjiao Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijuan Wu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhao Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Wang Z, Li H, Li J, Yang Y, Xu Z, Yang J, Wei P, Ma H. Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112396. [PMID: 39848592 DOI: 10.1016/j.plantsci.2025.112396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice. To explore the endogenous stress-resistant genes and apply them to the breeding of new stress-resistant varieties is an effective way to improve the stress tolerance and adaptability of rice. PHD-finger transcription factor is a kind of zinc-finger structural protein that exists widely in eukaryotes. Its function is mainly focused on gene transcription and regulation of chromatin state, but there are few reports about its involvement in stress response. In the present study, a total of 58 PHD-finger transcription factors were identified, and two genes OsPHD13 and OsPHD52 were significantly up-regulated under low temperature stress. After low temperature induction, GUS driven by OsPHD13 and OsPHD52 promoters had different expression activities in roots, stems and leaves of transgenic plants. Further functional analysis of the pOsPHD13 and pOsPHD52 showed that each of them had a cis-acting element of CRT/DRE in response to low temperature stress. Both in yeast one-hybrid assays and in in vitro gel-shift analysis, CBF protein could specifically bind to the CRT/DRE element in the promoter.
Collapse
Affiliation(s)
- Zimeng Wang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hao Li
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Juan Li
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yachun Yang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zuntao Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jianbo Yang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Pengcheng Wei
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China.
| | - Hui Ma
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China.
| |
Collapse
|
3
|
Jing H, Liu W, Qu GP, Niu D, Jin JB. SUMOylation of AL6 regulates seed dormancy and thermoinhibition in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:1040-1055. [PMID: 39562527 DOI: 10.1111/nph.20270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
DELAY OF GERMINATION1 (DOG1) is a critical regulator of seed dormancy and seed thermoinhibition. However, how DOG1 expression is regulated by post-translational modifications and how seeds transmit the high-temperature signal to DOG1 remain largely unknown. ALFIN1-like 6/7 (AL6/7) was previously found to repress DOG1 expression during seed imbibition. Here, we found that AL6/7 represses seed dormancy partly by downregulating DOG1 expression. AtSIZ1, a SUMO E3 ligase, interacts with AL6 and mediates its SUMOylation mainly at the lysine 181 residue. SIZ1-mediated SUMOylation of AL6 is required for repression of DOG1 transcription and seed dormancy. SUMOylation of AL6 is required for its association with the DOG1 locus and protects it from ubiquitination and subsequent 26S proteasome-mediated protein degradation. High temperatures decrease SUMOylation levels of AL6, resulting in downregulation of AL6 protein levels and an increase in DOG1 transcription, which consequently causes reduced seed germination. Taken together, these results demonstrate that reversible SUMOylation of AL6 fine-tunes DOG1 expression, which is required for precise establishment of seed dormancy and inhibition of seed germination under high-temperature conditions in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hua Jing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Gao-Ping Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257000, China
| |
Collapse
|
4
|
Su XM, Yuan DY, Liu N, Zhang ZC, Yang M, Li L, Chen S, Zhou Y, He XJ. ALFIN-like proteins link histone H3K4me3 to H2A ubiquitination and coordinate diverse chromatin modifications in Arabidopsis. MOLECULAR PLANT 2025; 18:130-150. [PMID: 39668562 DOI: 10.1016/j.molp.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Trimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we show that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3 and a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1, thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome. Furthermore, we demonstrate that loss of function of SDG2, encoding a key histone H3K4 methyltransferase, leads to a reduction in H3K4me3 level, which subsequently causes a genome-wide decrease in H2Aub, revealing a strong association between H3K4me3 and H2Aub. Finally, we discover that the PAL domain of AL proteins interacts with various other chromatin-related proteins or complexes, including those involved in regulating H2A.Z deposition, H3K27me3 demethylation, histone deacetylation, and chromatin accessibility. Our genome-wide analysis suggests that the AL proteins play a crucial role in coordinating H3K4me3 with multiple other chromatin modifications across the genome.
Collapse
Affiliation(s)
- Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Na Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
5
|
Tan YS, Li JH, Wang PL, Wang DN, Liu BC, Phetmany S, Li YX, Xie QJ, Gao CQ. The PHD transcription factor ThPHD5 regulates antioxidant enzyme activity to increase salt tolerance in Tamarix hispida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112319. [PMID: 39547448 DOI: 10.1016/j.plantsci.2024.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
PHD proteins are an important class of transcription factors (TFs) that are widely distributed in eukaryotes and play crucial roles in many aspects of plant growth, development and response to stress. We identified a transcription factor, ThPHD5, from the PHD family in Tamarix hispida based on its potential involvement in abiotic stress response processes. In this study, the salt tolerance function of ThPHD5 from T. hispida was further characterized. The qRT-PCR results showed ThPHD5 expression was significantly induced by NaCl, PEG and ABA treatments. Transient transformation analysis revealed that ThPHD5 improved salt tolerance in T. hispida by increasing POD and SOD activity, decreasing the MDA, total ROS content and electrolyte leakage. To explore the salt tolerance mechanism of the ThPHD5 TF, its binding DNA motifs and potential downstream regulatory genes were analyzed. The results showed that ThPHD5 affect the expression of 7 antioxidant enzyme-related genes. The Yeast one-hybrid (Y1H) and Electrophoretic Mobility Shift Assay (EMSA) results indicated ThPHD5 could bind to ABRE, MYB and Dof cis-acting elements. ChIP-PCR further confirmed ThPHD5 exercise its regulatory function by directly binding motifs on the ThPOD16, ThSOD and ThSOD1 promoters. Taken together, these findings indicate the ThPHD5 TF improves salt tolerance in T. hispida by regulating the expression of antioxidant enzyme-related genes to increase antioxidant enzyme activity, enhance the ROS scavenge ability, reduce ROS accumulation and cellular damage.
Collapse
Affiliation(s)
- Yao-Shuo Tan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing-Hang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Pei-Long Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325000, China
| | - Dan-Ni Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Bai-Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Sonethavy Phetmany
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yong-Xi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Cai-Qiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Wu Z, Liu S, Zhang X, Qian X, Chen Z, Zhao H, Wan H, Yin N, Li J, Qu C, Du H. Genome-Wide Characterization of Alfin-like Genes in Brassica napus and Functional Analyses of BnaAL02 and BnaAL28 in Response to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:2493. [PMID: 39273978 PMCID: PMC11396871 DOI: 10.3390/plants13172493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Alfin-like proteins (ALs) form a plant-specific transcription factor (TF) gene family involved in the regulation of plant growth and development, and abiotic stress response. In this study, 30 ALs were identified in Brassica napus ecotype 'Zhongshuang 11' genome (BnaALs), and unevenly distributed on 15 chromosomes. Structural characteristic analysis showed that all of the BnaALs contained two highly conserved domains: the N terminal DUF3594 domain and the C-terminal PHD-finger domain. The BnaALs were classified into four groups (Group I-IV), supported by conserved intron-exon and protein motif structures in each group. The allopolyploid event between B. oleracea and B. rapa ancestors and the small-scale duplication events in B. napus both contributed to the large BnaALs expansion. The promoter regions of BnaALs contained multiple abiotic stress cis-elements. The BnaALs in I-IV groups were mainly expressed in cotyledon, petal, root, silique, and seed tissues, and the duplicated gene pairs shared highly similar expression patterns. RNA-seq and RT-qPCR analysis showed that BnaALs were obviously induced by low nitrogen (LN) and low phosphorus (LP) treatments in roots. Overexpressing BnaAL02 and BnaAL28 in Arabidopsis demonstrated their functions in response to LN and LP stresses. BnaAL28 enhanced primary roots' (PRs) length and lateral roots' (LRs) number under LP and LN conditions, where BnaAL02 can inhibit LR numbers under the two conditions. They can promote root hair (RH) elongation under LP conditions; however, they suppressed RH elongation under LN conditions. Our result provides new insight into the functional dissection of this family in response to nutrient stresses in plants.
Collapse
Affiliation(s)
- Zexuan Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shiying Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xinyun Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xingzhi Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Zhuo Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huafang Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
7
|
Zhang D, Ma S, Liu Z, Yang Y, Yang W, Zeng H, Su H, Yang Y, Zhang W, Zhang J, Ku L, Ren Z, Chen Y. ZmABF4-ZmVIL2/ZmFIP37 module enhances drought tolerance in maize seedlings. PLANT, CELL & ENVIRONMENT 2024; 47:3605-3618. [PMID: 38747469 DOI: 10.1111/pce.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 08/16/2024]
Abstract
Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.
Collapse
Affiliation(s)
- Dongling Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shixiang Ma
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuwei Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haixia Zeng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yang Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wanjun Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Liu H, Liu W, Wang Z, Li N, Xie Y, Zhao Y. Comprehensive analysis of Alfin-like transcription factors associated with drought and salt stresses in wheat (Triticum aestivum L.). BMC Genomics 2024; 25:701. [PMID: 39020295 PMCID: PMC11256656 DOI: 10.1186/s12864-024-10557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Alfin-like proteins are a kind of plant-specific transcription factors, and play vital roles in plant growth, development and stress responses. RESULTS In this study, a total of 27 Alfin-like transcription factors were identified in wheat. TaAL genes were unevenly distributed on chromosome. Phylogenetic analysis showed TaAL genes were divided into AL-B and AL-C subfamilies, and TaALs with closer evolutionary relationships generally shared more similar exon-intron structures and conserved motifs. The cis-acting element analysis showed MBS, ABRE and CGTCA-motif were the most common in TaAL promoters. The interacting proteins and downstream target genes of TaAL genes were also investigated in wheat. The transcriptome data and real-time PCR results indicated TaAL genes were differentially expressed under drought and salt stresses, and TaAL1-B was significantly up-regulated in response to drought stress. In addition, association analysis revealed that TaAL1-B-Hap-I allelic variation had significantly higher survival rate compared to TaAL1-B-Hap-II under drought stress. CONCLUSIONS These results will provide vital information to increase our understanding of the Alfin-like gene family in wheat, and help us in breeding better wheat varieties in the future.
Collapse
Affiliation(s)
- Hao Liu
- College of Agriculture, Ludong University, Yantai, 264000, China
| | - Wenyan Liu
- College of Agriculture, Ludong University, Yantai, 264000, China
| | - Ziyi Wang
- College of Agriculture, Ludong University, Yantai, 264000, China
| | - Na Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Yongfeng Xie
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714099, China.
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, 264000, China.
| |
Collapse
|
9
|
Wang G, Wang X, Li D, Yang X, Hu T, Fu J. Comparative proteomics in tall fescue to reveal underlying mechanisms for improving Photosystem II thermotolerance during heat stress memory. BMC Genomics 2024; 25:683. [PMID: 38982385 PMCID: PMC11232258 DOI: 10.1186/s12864-024-10580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.
Collapse
Affiliation(s)
- Guangyang Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xiulei Wang
- Urban Management Bureau, Taiqian County, Puyang City, 457600, China
| | - Dongli Li
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xuehe Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou city, 730020, China.
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China.
| |
Collapse
|
10
|
Liu J, Wang Z, Chen B, Wang G, Ke H, Zhang J, Jiao M, Wang Y, Xie M, Gu Q, Sun Z, Wu L, Wang X, Ma Z, Zhang Y. Genome-Wide Identification of the Alfin-like Gene Family in Cotton ( Gossypium hirsutum) and the GhAL19 Gene Negatively Regulated Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1831. [PMID: 38999670 PMCID: PMC11243875 DOI: 10.3390/plants13131831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Mengjia Jiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
11
|
Wang Y, Cheng J, Guo Y, Li Z, Yang S, Wang Y, Gong Z. Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1334-1350. [PMID: 38804844 DOI: 10.1111/jipb.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Drought stress has negative effects on crop growth and production. Characterization of transcription factors that regulate the expression of drought-responsive genes is critical for understanding the transcriptional regulatory networks in response to drought, which facilitates the improvement of crop drought tolerance. Here, we identified an Alfin-like (AL) family gene ZmAL14 that negatively regulates drought resistance. Overexpression of ZmAL14 exhibits susceptibility to drought while mutation of ZmAL14 enhances drought resistance. An abscisic acid (ABA)-activated protein kinase ZmSnRK2.2 interacts and phosphorylates ZmAL14 at T38 residue. Knockout of ZmSnRK2.2 gene decreases drought resistance of maize. A dehydration-induced Rho-like small guanosine triphosphatase gene ZmROP8 is directly targeted and repressed by ZmAL14. Phosphorylation of ZmAL14 by ZmSnRK2.2 prevents its binding to the ZmROP8 promoter, thereby releasing the repression of ZmROP8 transcription. Overexpression of ZmROP8 stimulates peroxidase activity and reduces hydrogen peroxide accumulation after drought treatment. Collectively, our study indicates that ZmAL14 is a negative regulator of drought resistance, which can be phosphorylated by ZmSnRK2.2 through the ABA signaling pathway, thus preventing its suppression on ZmROP8 transcription during drought stress response.
Collapse
Affiliation(s)
- Yalin Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yazhen Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
12
|
Liu M, Li W, Zheng X, Yuan Z, Zhou Y, Yang J, Mao Y, Wang D, Wu Q, He Y, He L, Zong D, Chen J. Genome-Wide Identification and Expression Analysis of the PHD Finger Gene Family in Pea ( Pisum sativum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1489. [PMID: 38891298 PMCID: PMC11174613 DOI: 10.3390/plants13111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The plant homeodomain finger (PHD finger) protein, a type of zinc finger protein extensively distributed in eukaryotes, plays diverse roles in regulating plant growth and development. While PHD finger proteins have been identified in various species, their functions remain largely unexplored in pea (Pisum sativum). In this study, we identified 84 members of the PHD finger gene family in pea, which displayed an uneven distribution across seven chromosomes. Through a comprehensive analysis using data from Arabidopsis thaliana and Medicago truncatula, we categorized the PHD finger proteins into 20 subfamilies via phylogenetic tree analysis. Each subfamily exhibited distinct variations in terms of quantity, genetic structure, conserved domains, and physical and chemical properties. Collinearity analysis revealed conserved evolutionary relationships among the PHD finger genes across the three different species. Furthermore, we identified the conserved and important roles of the subfamily M members in anther development. RT-qPCR and in situ hybridization revealed high expression of the pea subfamily M members PsPHD11 and PsPHD16 in microspores and the tapetum layer. In conclusion, this analysis of the PHD finger family in pea provides valuable guidance for future research on the biological roles of PHD finger proteins in pea and other leguminous plants.
Collapse
Affiliation(s)
- Mingli Liu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China; (M.L.); (W.L.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
| | - Wenju Li
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China; (M.L.); (W.L.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
| | - Xiaoling Zheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Yuan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yexin He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zong
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China; (M.L.); (W.L.)
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; (X.Z.); (Z.Y.); (Y.Z.); (J.Y.); (Y.M.); (D.W.); (Q.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Jung WJ, Jeong JH, Yoon JS, Seo YW. Genome-wide identification of the plant homeodomain-finger family in rye and ScPHD5 functions in cold tolerance and flowering time. PLANT CELL REPORTS 2024; 43:142. [PMID: 38744747 DOI: 10.1007/s00299-024-03226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.
Collapse
Affiliation(s)
- Woo Joo Jung
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Korea
| | - Ji Hyeon Jeong
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea.
- Ojeong Plant Breeding Research Center, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
14
|
Shearman JR, Naktang C, Sonthirod C, Kongkachana W, U-Thoomporn S, Jomchai N, Maknual C, Yamprasai S, Wanthongchai P, Pootakham W, Tangphatsornruang S. De novo assembly and analysis of Sonneratia ovata genome and population analysis. Genomics 2024; 116:110837. [PMID: 38548034 DOI: 10.1016/j.ygeno.2024.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Mangroves are an important part of coastal and estuarine ecosystems where they serve as nurseries for marine species and prevent coastal erosion. Here we report the genome of Sonneratia ovata, which is a true mangrove that grows in estuarine environments and can tolerate moderate salt exposure. We sequenced the S. ovata genome and assembled it into chromosome-level scaffolds through the use of Hi-C. The genome is 212.3 Mb and contains 12 chromosomes that range in size from 12.2 to 23.2 Mb. Annotation identified 29,829 genes with a BUSCO completeness of 95.9%. We identified salt genes and found copy number expansion of salt genes such as ADP-ribosylation factor 1, and elongation factor 1-alpha. Population analysis identified a low level of genetic variation and a lack of population structure within S. ovata.
Collapse
Affiliation(s)
- Jeremy R Shearman
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wasitthee Kongkachana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sonicha U-Thoomporn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nukoon Jomchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Suchart Yamprasai
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Poonsri Wanthongchai
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
15
|
Sureshkumar S, Bandaranayake C, Lv J, Dent CI, Bhagat PK, Mukherjee S, Sarwade R, Atri C, York HM, Tamizhselvan P, Shamaya N, Folini G, Bergey BG, Yadav AS, Kumar S, Grummisch OS, Saini P, Yadav RK, Arumugam S, Rosonina E, Sadanandom A, Liu H, Balasubramanian S. SUMO protease FUG1, histone reader AL3 and chromodomain protein LHP1 are integral to repeat expansion-induced gene silencing in Arabidopsis thaliana. NATURE PLANTS 2024; 10:749-759. [PMID: 38641663 DOI: 10.1038/s41477-024-01672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | - Champa Bandaranayake
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Junqing Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Craig I Dent
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Sourav Mukherjee
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Rucha Sarwade
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Chhaya Atri
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prashanth Tamizhselvan
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Giulia Folini
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Subhasree Kumar
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Oliver S Grummisch
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Prince Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Ram K Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- European Molecular Biology Laboratory, Australia (EMBL Australia), Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, UK
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
16
|
Jin R, Yang H, Muhammad T, Li X, Tuerdiyusufu D, Wang B, Wang J. Involvement of Alfin-Like Transcription Factors in Plant Development and Stress Response. Genes (Basel) 2024; 15:184. [PMID: 38397174 PMCID: PMC10887727 DOI: 10.3390/genes15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Alfin-like (AL) proteins are an important class of transcription factor (TF) widely distributed in eukaryotes and play vital roles in many aspects of plant growth and development. AL proteins contain an Alfin-like domain and a specific PHD-finger structure domain at the N-terminus and C-terminus, respectively. The PHD domain can bind to a specific (C/A) CAC element in the promoter region and affect plant growth and development by regulating the expression of functional genes. This review describes a variety of AL transcription factors that have been isolated and characterized in Arabidopsis thaliana, Brassica rapa, Zea mays, Brassica oleracea, Solanum lycopersicum, Populus trichocarpa, Pyrus bretschenedri, Malus domestica, and other species. These studies have focused mainly on plant growth and development, different abiotic stress responses, different hormonal stress responses, and stress responses after exposure to pathogenic bacteria. However, studies on the molecular functional mechanisms of Alfin-like transcription factors and the interactions between different signaling pathways are rare. In this review, we performed phylogenetic analysis, cluster analysis, and motif analysis based on A. thaliana sequences. We summarize the structural characteristics of AL transcription factors in different plant species and the diverse functions of AL transcription factors in plant development and stress regulation responses. The aim of this study was to provide a reference for further application of the functions and mechanisms of action of the AL protein family in plants.
Collapse
Affiliation(s)
- Ruixin Jin
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Xin Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Diliaremu Tuerdiyusufu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (R.J.); (H.Y.); (T.M.); (X.L.); (D.T.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
17
|
Quan W, Chan Z, Wei P, Mao Y, Bartels D, Liu X. PHD finger proteins function in plant development and abiotic stress responses: an overview. FRONTIERS IN PLANT SCIENCE 2023; 14:1297607. [PMID: 38046601 PMCID: PMC10693458 DOI: 10.3389/fpls.2023.1297607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The plant homeodomain (PHD) finger with a conserved Cys4-His-Cys3 motif is a common zinc-binding domain, which is widely present in all eukaryotic genomes. The PHD finger is the "reader" domain of methylation marks in histone H3 and plays a role in the regulation of gene expression patterns. Numerous proteins containing the PHD finger have been found in plants. In this review, we summarize the functional studies on PHD finger proteins in plant growth and development and responses to abiotic stresses in recent years. Some PHD finger proteins, such as VIN3, VILs, and Ehd3, are involved in the regulation of flowering time, while some PHD finger proteins participate in the pollen development, for example, MS, TIP3, and MMD1. Furthermore, other PHD finger proteins regulate the plant tolerance to abiotic stresses, including Alfin1, ALs, and AtSIZ1. Research suggests that PHD finger proteins, as an essential transcription regulator family, play critical roles in various plant biological processes, which is helpful in understanding the molecular mechanisms of novel PHD finger proteins to perform specific function.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Piwei Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Yahui Mao
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
18
|
Jin R, Wang J, Guo B, Yang T, Hu J, Wang B, Yu Q. Identification and Expression Analysis of the Alfin-like Gene Family in Tomato and the Role of SlAL3 in Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2829. [PMID: 37570984 PMCID: PMC10421131 DOI: 10.3390/plants12152829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Alfin-like (AL) transcription factors are a family of plant-specific genes with a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus that play important roles in plant development and stress response. In the present study, genome-wide identification and analysis were performed of the AL protein family in cultivated tomato (Solanum lycopersicum) and three wild relatives (S. pennellii, S. pimpinellifolium, and S. lycopersicoides) to evaluate their response to different abiotic stresses. A total of 39 ALs were identified and classified into four groups and based on phylogenetic tree and evolutionary analysis were shown to have formed prior to the differentiation of monocotyledons and dicots. Moreover, cis-acting element analysis revealed that various phytohormone response and abiotic stress response elements were highly existed in tomato. In addition, further analysis of the SlAL3 gene revealed that its expression was induced by drought and salt stresses and localized to the nucleus. In conclusion, our findings concerning AL genes provide useful information for further studies on their functions and regulatory mechanisms and provide theoretical references for studying AL gene response to abiotic stresses in plants.
Collapse
Affiliation(s)
- Ruixin Jin
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.J.); (J.W.)
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Juan Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.J.); (J.W.)
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Bin Guo
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Jiahui Hu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.J.); (J.W.)
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China; (T.Y.); (J.H.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China;
| |
Collapse
|
19
|
Jin H, Wang D, Wang X. A novel module regulating ROS in NLR-mediated immunity. TRENDS IN PLANT SCIENCE 2023; 28:512-514. [PMID: 36801196 DOI: 10.1016/j.tplants.2023.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
The regulatory mechanisms of apoplastic reactive oxygen species (ROS) production during pattern-triggered immunity (PTI) are well known. However, how ROS levels are regulated during effector-triggered immunity (ETI) remains largely unknown. Recently, Zhang et al. discovered that MAPK-Alfin-like 7 module enhances nucleotide-binding, leucine-rich repeat receptor (NLR)-mediated immunity by negatively regulating genes encoding ROS scavenging enzymes, deepening our understanding of ROS control during ETI in plants.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Long J, Carter B, Johnson ET, Ogas J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin Cell Dev Biol 2023; 135:85-92. [PMID: 35474148 PMCID: PMC9588091 DOI: 10.1016/j.semcdb.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Emily T Johnson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
21
|
Li S, Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Chen X, Yuan X. Identification and Functional Characterization of WRKY, PHD and MYB Three Salt Stress Responsive Gene Families in Mungbean ( Vigna radiata L.). Genes (Basel) 2023; 14:463. [PMID: 36833390 PMCID: PMC9956968 DOI: 10.3390/genes14020463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
WRKY-, PHD-, and MYB-like proteins are three important types of transcription factors in mungbeans, and play an important role in development and stress resistance. The genes' structures and characteristics were clearly reported and were shown to contain the conservative WRKYGQK heptapeptide sequence, Cys4-His-cys3 zinc binding motif, and HTH (helix) tryptophan cluster W structure, respectively. Knowledge on the response of these genes to salt stress is largely unknown. To address this issue, 83 VrWRKYs, 47 VrPHDs, and 149 VrMYBs were identified by using comparative genomics, transcriptomics, and molecular biology methods in mungbeans. An intraspecific synteny analysis revealed that the three gene families had strong co-linearity and an interspecies synteny analysis showed that mungbean and Arabidopsis were relatively close in genetic relationship. Moreover, 20, 10, and 20 genes showed significantly different expression levels after 15 days of salt treatment (p < 0.05; Log2 FC > 0.5), respectively. Additionally, in the qRT-PCR analysis, VrPHD14 had varying degrees of response to NaCl and PEG treatments after 12 h. VrWRKY49 was upregulated by ABA treatment, especially in the beginning (within 24 h). VrMYB96 was significantly upregulated in the early stages of ABA, NaCl, and PEG stress treatments (during the first 4 h). VrWRKY38 was significantly upregulated by ABA and NaCl treatments, but downregulated by PEG treatment. We also constructed a gene network centered on the seven DEGs under NaCl treatment; the results showed that VrWRKY38 was in the center of the PPI network and most of the homologous Arabidopsis genes of the interacted genes were reported to have response to biological stress. Candidate genes identified in this study provide abundant gene resources for the study of salt tolerance in mungbeans.
Collapse
Affiliation(s)
- Shicong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
22
|
Wang P, Lu S, Li W, Ma Z, Mao J, Chen B. Genome-wide characterization of Alfin-like (AL) genes in apple and functional identification of MdAL4 in response to drought stress. PLANT CELL REPORTS 2023; 42:395-408. [PMID: 36596886 DOI: 10.1007/s00299-022-02966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Eleven Alfin-like (AL) genes were obtained from apple and MdAL4 was selected for improving drought stress tolerance of transgenic apple callus and Arabidopsis. Drought is an important environmental factor affecting plant growth all over the world. Alfin-like (AL) have well-documented functions in abiotic stress response, but their drought stress tolerance in apple (Malus domestica) are poorly understood. According to the transcriptome data, 11 MdAL genes containing conserved Alfin and PHD-finger domain were identified in apple and divided into three subgroups with a total of 35 members from different species. Subsequently, gene structures, conserved amino acid sequences, promoter cis-acting elements, and gene evolution events were analyzed. Based on differential expression of MdALs in response to abiotic stresses, MdAL4, which was highly expressed under drought, was further cloned and investigated. MdAL4 encoding nuclear-localized protein conferred enhanced drought tolerance in overexpressing transgenic calli of apple 'Orin'. Moreover, the ectopic expression of MdAL4 improved the drought tolerance of transgenic Arabidopsis, as judged from remarkably decreased malonaldehyde (MDA) content and electrolyte leakage in MdAL4 overexpressing plants relative to WT. Furthermore, MdAL4 possibly could bind to promoter regions of ROS-scavenging and stress-related genes to improve drought tolerance. Additionally, we found in silico evidence that three proteins containing the WD40 domain that interact with MdAL4. Based on these results, MdAL4 was identified as a positive regulator for improving drought stress of apple.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
23
|
Yan C, Yang N, Li R, Wang X, Xu Y, Zhang C, Wang X, Wang Y. Alfin-like transcription factor VqAL4 regulates a stilbene synthase to enhance powdery mildew resistance in grapevine. MOLECULAR PLANT PATHOLOGY 2023; 24:123-141. [PMID: 36404575 PMCID: PMC9831286 DOI: 10.1111/mpp.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Resveratrol is a phytoalexin that is synthesized by stilbene synthase (STS). Resveratrol in the human diet is known to have beneficial effects on health. We previously identified six novel STS (VqNSTS) transcripts from the transcriptome data of Vitis quinquangularis accession Danfeng-2. However, the functions of and defensive mechanisms triggered by these VqNSTS transcripts remain unknown. In the present study, we demonstrate that the expression of five of these six novel members, VqNSTS2-VqNSTS6, can be induced by the powdery mildew-causing fungus Uncinula necator. Additionally, overexpression of VqNSTS4 in the V. vinifera susceptible cultivar Thompson Seedless promoted accumulation of stilbenes and enhanced resistance to U. necator by activating salicylic acid (SA) signalling. Furthermore, our results indicate that the Alfin-like (AL) transcription factor VqAL4 can directly bind to the G-rich element (CACCTC) in the VqNSTS4 promoter and activate gene expression. Moreover, overexpression of VqAL4 in Thompson Seedless enhanced resistance to U. necator by promoting stilbene accumulation and activating SA signalling. Conversely, RNA interference-mediated silencing of VqNSTS4 and VqAL4 resulted in increased susceptibility to U. necator. Collectively, our results reveal that VqNSTS4, regulated by VqAL4, enhances grapevine resistance to powdery mildew by activating SA signalling. Our findings may be useful to improve disease resistance in perennial fruit trees.
Collapse
Affiliation(s)
- Chaohui Yan
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Na Yang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Ruimin Li
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Xinqi Wang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Yan Xu
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Chaohong Zhang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Xiping Wang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Yuejin Wang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| |
Collapse
|
24
|
Pang F, Niu J, Solanki MK, Nosheen S, Liu Z, Wang Z. PHD-finger family genes in wheat ( Triticum aestivum L.): Evolutionary conservatism, functional diversification, and active expression in abiotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1016831. [PMID: 36578331 PMCID: PMC9791960 DOI: 10.3389/fpls.2022.1016831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Plant homeodomain (PHD) transcription factors (TFs) are a class of proteins with conserved Cys4-His-Cys3 domains that play important roles in plant growth and development and in response to abiotic stresses. Although characterization of PHDs has been performed in plants, little is known about their function in wheat (Triticum aestivum L.), especially under stress conditions. In the present study, 244 TaPHDs were identified in wheat using comparative genomics. We renamed them TaPHD1-244 based on their chromosomal distribution, and almost all PHD proteins were predicted to be located in the nucleus. According to the unrooted neighbor-joining phylogenetic tree, gene structure, and motif analyses, PHD genes were divided into four clades. A total of 149 TaPHD genes were assigned to arise from duplication events. Furthermore, 230 gene pairs came from wheat itself, and 119, 186, 168, 7, 2, and 6 gene pairs came from six other species (Hordeum vulgareto, Zea mays, Oryza sativa, Arabidopsis thaliana, Brassica rapa, and Gossypium raimondii, respectively). A total of 548 interacting protein branches were identified to be involved in the protein interaction network. Tissue-specific expression pattern analysis showed that TaPHDs were highly expressed in the stigma and ovary during flowering, suggesting that the TaPHD gene plays an active role in the reproductive growth of wheat. In addition, the qRT-PCR results further confirmed that these TaPHD genes are involved in the abiotic stress response of wheat. In conclusion, our study provides a theoretical basis for deciphering the molecular functions of TaPHDs, particularly in response to abiotic stress.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Yulin Normal University, Yulin, China
| | - Junqi Niu
- College of Agriculture, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Shaista Nosheen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zhaoliang Liu
- College of Agriculture, Yulin Normal University, Yulin, China
| | - Zhen Wang
- College of Agriculture, Yulin Normal University, Yulin, China
| |
Collapse
|
25
|
Yang Y, Ma X, Xia H, Wang L, Chen S, Xu K, Yang F, Zou Y, Wang Y, Zhu J, Li T, Luo Z, Hu S, Liao Z, Luo L, Yu S. Natural variation of Alfin-like family affects seed size and drought tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1176-1193. [PMID: 36219491 DOI: 10.1111/tpj.16003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The Alfin-like (AL) family is a group of small plant-specific transcriptional factors involved in abiotic stresses in dicotyledon. In an early study, we found an AL gene in rice that was associated with grain yield under drought stress. However, little information is known about the AL family in rice. In this study, AL genes in the rice genome were identified, and the OsAL proteins were found to locate in the nucleus and have no transcriptional self-activation activity. The expression of the OsALs was regulated by different environmental stimulations and plant hormones. Association and domestication analysis revealed that natural variation of most OsALs was significantly associated with yield traits, drought resistance and divergence in grain size in indica and japonica rice varieties. Hap1 of OsAL7.1 and Hap7 of OsAL11 were favorable haplotypes of seed weight and germination under osmotic stress. Furthermore, osal7.1 and osal11 mutants have larger seeds and are more sensitive to abscisic acid and mannitol during germination stage. Overexpressing of OsAL7.1 and OsAL11 in rice weakened the tolerance to drought in the adult stage. Thus, our work provides informative knowledge for exploring and harnessing haplotype diversity of OsALs to improve yield stability under drought stress.
Collapse
Affiliation(s)
- Yunan Yang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- The Research Center for Plant Functional Genes and Tissue Culture Technology of Jiangxi Agricultural University, 1101# Zhimin Avenue, Nanchang, Jiangxi, 330045, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Yuqiao Zou
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Yulan Wang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Jinmin Zhu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- The Research Center for Plant Functional Genes and Tissue Culture Technology of Jiangxi Agricultural University, 1101# Zhimin Avenue, Nanchang, Jiangxi, 330045, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Zhi Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Songping Hu
- The Research Center for Plant Functional Genes and Tissue Culture Technology of Jiangxi Agricultural University, 1101# Zhimin Avenue, Nanchang, Jiangxi, 330045, China
| | - Zhigang Liao
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, 2901# Beidi Road, Minhang District, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 2901# Beidi Road, Minghang District, Shanghai, 201106, China
| |
Collapse
|
26
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
27
|
Wang J, Tian S, Yu Y, Ren Y, Guo S, Zhang J, Li M, Zhang H, Gong G, Wang M, Xu Y. Natural variation in the NAC transcription factor NONRIPENING contributes to melon fruit ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1448-1461. [PMID: 35568969 DOI: 10.1111/jipb.13278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S , have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S . Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.
Collapse
Affiliation(s)
- Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Min Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Haikou, 572025, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| |
Collapse
|
28
|
Baile F, Gómez-Zambrano Á, Calonje M. Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants. PLANT COMMUNICATIONS 2022; 3:100267. [PMID: 35059633 PMCID: PMC8760139 DOI: 10.1016/j.xplc.2021.100267] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/16/2023]
Abstract
The evolutionary conserved Polycomb Group (PcG) repressive system comprises two central protein complexes, PcG repressive complex 1 (PRC1) and PRC2. These complexes, through the incorporation of histone modifications on chromatin, have an essential role in the normal development of eukaryotes. In recent years, a significant effort has been made to characterize these complexes in the different kingdoms, and despite there being remarkable functional and mechanistic conservation, some key molecular principles have diverged. In this review, we discuss current views on the function of plant PcG complexes. We compare the composition of PcG complexes between animals and plants, highlight the role of recently identified plant PcG accessory proteins, and discuss newly revealed roles of known PcG partners. We also examine the mechanisms by which the repression is achieved and how these complexes are recruited to target genes. Finally, we consider the possible role of some plant PcG proteins in mediating local and long-range chromatin interactions and, thus, shaping chromatin 3D architecture.
Collapse
Affiliation(s)
- Fernando Baile
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092 Seville, Spain
| | - Ángeles Gómez-Zambrano
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092 Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
29
|
Bano N, Fakhrah S, Nayak SP, Bag SK, Mohanty CS. Identification of miRNA and their target genes in Cestrum nocturnum L. and Cestrum diurnum L. in stress responses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:31-49. [PMID: 35221570 PMCID: PMC8847519 DOI: 10.1007/s12298-022-01127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules and products of primary miRNAs that regulate the target gene expression. Homology-based approaches were employed to identify miRNAs and their targets in Cestrum nocturnum L. and Cestrum diurnum L. A total of 32 and 12 miRNA candidates were identified in C. nocturnum and C. diurnum. These miRNAs belong to 26 and 10 miRNA families and regulate 1024 and 1007 target genes in C. nocturnum, and C. diurnum, respectively. The functional roles of these miRNAs have not been earlier elucidated in Cestrum. MiR815a, miR849, miR1089 and miR172 have a strong propensity to target genes controlling phytochrome-interacting factor 1 (PIF1), ubiquitin-specific protease 12 (UBP12), leucine-rich repeat (LRR) protein kinase and GAI, RGA, SCR (GRAS) family transcription factor in C. nocturnum. While miR5205a, miR1436 and miR530 regulate PATATIN-like protein 6 (PLP6), PHD finger transcription factor and myb domain protein 48 (MYB48) in C. diurnum. Overall, these miRNAs have regulatory responses in biotic and abiotic stresses in both plant species. Eight putative miRNAs and their target genes were selected for qRT-PCR validation. The validated results suggested the importance of miR815a, miR849, miR5205a, miR1089, miR172, miR1436, and miR530 in exerting control over stress responses in C. nocturnum and C. diurnum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01127-1.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh 226007 India
| | - Sagar Prasad Nayak
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
30
|
Luo G, Shen L, Zhao S, Li R, Song Y, Song S, Yu K, Yang W, Li X, Sun J, Wang Y, Gao C, Liu D, Zhang A. Genome-wide identification of seed storage protein gene regulators in wheat through coexpression analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1704-1720. [PMID: 34634158 DOI: 10.1111/tpj.15538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
Abstract
Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, CA, USA
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shuyi Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Wenlong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071000, China
| |
Collapse
|
31
|
Wen J, Zeng Y, Chen Y, Fan F, Li S. Genic male sterility increases rice drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111057. [PMID: 34620451 DOI: 10.1016/j.plantsci.2021.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Plant fertility and resistance to stress environments are antagonistic to each other. At booting stage, fertility is often sacrificed for survive in rice under abiotic stress. However, the relationship between fertility and resistance at molecular level remains elusive. Here, we identified a transcription factor, OsAlfin like 5, which regulates the OsTMS5 and links both the drought stress response and thermosensitive genic male sterility. The OsAL5 overexpression plants (OE-OsAL5) became sensitive to temperature owning to the OsTMS5 that the OE-OsAL5 plants were fertile under low temperature (23 °C) and sterile under high temperature (28 °C). Significantly, the survival rate of OE-OsAL5 lines was higher than that of the wide-type (WT) under drought stress. Further experiments confirmed that the OsAL5 regulated both of the OsTMS5 and the down-stream drought-related genes by binding to the 'GTGGAG' element in vivo, revealing that the OsAL5 participated both in the drought stress response and thermosensitive genic male sterility in rice. These findings open up the possibility of breeding elite TGMS lines with strong drought tolerance by manipulating the expression of OsAL5.
Collapse
Affiliation(s)
- Jianyu Wen
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Yunping Chen
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
32
|
Wei S, Xia R, Chen C, Shang X, Ge F, Wei H, Chen H, Wu Y, Xie Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2069-2081. [PMID: 34031958 PMCID: PMC8486247 DOI: 10.1111/pbi.13637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Due to climate change, drought has become a severe abiotic stress that affects the global production of all crops. Elucidation of the complex physiological mechanisms underlying drought tolerance in crops will support the cultivation of new drought-tolerant crop varieties. Here, two drought-tolerant lines, RIL70 and RIL73, and two drought-sensitive lines, RIL44 and RIL93, from recombinant inbred lines (RIL) generated from maize drought-tolerant line PH4CV and drought-sensitive line F9721, were selected for a comparative RNA-seq study. Through transcriptome analyses, we found that gene expression differences existed between drought-tolerant and -sensitive lines, but also differences between the drought-tolerant lines, RIL70 and RIL73. ZmbHLH124 in RIL73, named as ZmbHLH124T-ORG which origins from PH4CV and encodes a bHLH type transcription factor, was specifically up-regulated during drought stress. In addition, we identified a substitution in ZmbHLH124 that produced an early stop codon in sensitive lines (ZmbHLH124S-ORG ). Overexpression of ZmbHLH124T-ORG , but not ZmbHLH124S-ORG , in maize and rice enhanced plant drought tolerance and up-regulated the expression of drought-responsive genes. Moreover, we found that ZmbHLH124T-ORG could directly bind the cis-acting elements in ZmDREB2A promoter to enhance its expression. Taken together, this work identified a valuable genetic locus and provided a new strategy for breeding drought-tolerant crops.
Collapse
Affiliation(s)
- Shaowei Wei
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Xia
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Chengxuan Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Shang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Fengyong Ge
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huimin Wei
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huabang Chen
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaorong Wu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Qi Xie
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
33
|
Wang J, Wang Y, Zhang J, Ren Y, Li M, Tian S, Yu Y, Zuo Y, Gong G, Zhang H, Guo S, Xu Y. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. HORTICULTURE RESEARCH 2021; 8:214. [PMID: 34593776 PMCID: PMC8484586 DOI: 10.1038/s41438-021-00649-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 05/22/2023]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in fruit ripening and quality. The watermelon genome encodes 80 NAC genes, and 21 of these NAC genes are highly expressed in both the flesh and vascular tissues. Among these genes, ClNAC68 expression was significantly higher in flesh than in rind. However, the intrinsic regulatory mechanism of ClNAC68 in fruit ripening and quality is still unknown. In this study, we found that ClNAC68 is a transcriptional repressor and that the repression domain is located in the C-terminus. Knockout of ClNAC68 by the CRISPR-Cas9 system decreased the soluble solid content and sucrose accumulation in mutant flesh. Development was delayed, germination was inhibited, and the IAA content was significantly decreased in mutant seeds. Transcriptome analysis showed that the invertase gene ClINV was the only gene involved in sucrose metabolism that was upregulated in mutant flesh, and expression of the indole-3-acetic acid-amido synthetase gene ClGH3.6 in the IAA signaling pathway was also induced in mutant seeds. EMSA and dual-luciferase assays showed that ClNAC68 directly bound to the promoters of ClINV and ClGH3.6 to repress their expression. These results indicated that ClNAC68 positively regulated sugar and IAA accumulation by repressing ClINV and ClGH3.6. Our findings provide new insights into the regulatory mechanisms by which NAC transcription factors affect fruit quality and seed development.
Collapse
Affiliation(s)
- Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yanping Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaowei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Zuo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| |
Collapse
|
34
|
Luo G, Shen L, Song Y, Yu K, Ji J, Zhang C, Yang W, Li X, Sun J, Zhan K, Cui D, Wang Y, Gao C, Liu D, Zhang A. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1863-1877. [PMID: 33949074 PMCID: PMC8428827 DOI: 10.1111/pbi.13604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Seed storage proteins (SSPs) are determinants of wheat end-product quality. SSP synthesis is mainly regulated at the transcriptional level. Few transcriptional regulators of SSP synthesis have been identified in wheat and this study aims to identify novel SSP gene regulators. Here, the R2R3 MYB transcription factor TuODORANT1 from Triticum urartu was found to be preferentially expressed in the developing endosperm during grain filling. In common wheat (Triticum aestivum) overexpressing TuODORANT1, the transcription levels of all the SSP genes tested by RNA-Seq analysis were reduced by 49.71% throughout grain filling, which contributed to 13.38%-35.60% declines in the total SSP levels of mature grains. In in vitro assays, TuODORANT1 inhibited both the promoter activities and the transcription of SSP genes by 1- to 13-fold. The electrophoretic mobility shift assay (EMSA) and ChIP-qPCR analysis demonstrated that TuODORANT1 bound to the cis-elements 5'-T/CAACCA-3' and 5'-T/CAACT/AG-3' in SSP gene promoters both in vitro and in vivo. Similarly, the homolog TaODORANT1 in common wheat hindered both the promoter activities and the transcription of SSP genes by 1- to 112-fold in vitro. Knockdown of TaODORANT1 in common wheat led to 14.73%-232.78% increases in the transcription of the tested SSP genes, which contributed to 11.43%-19.35% elevation in the total SSP levels. Our data show that both TuODORANT1 and TaODORANT1 are repressors of SSP synthesis.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- BGI GenomicsBGI‐ShenzhenShenzhenChina
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jingjing Ji
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Chi Zhang
- Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Wenlong Yang
- State Key Laboratory of North China Crop Improvement and RegulationCollege of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | | | | | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Dongcheng Liu
- College of Agronomy/Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringNational Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology/Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
35
|
Han G, Qiao Z, Li Y, Wang C, Wang B. The Roles of CCCH Zinc-Finger Proteins in Plant Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:ijms22158327. [PMID: 34361093 PMCID: PMC8347928 DOI: 10.3390/ijms22158327] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Zinc-finger proteins, a superfamily of proteins with a typical structural domain that coordinates a zinc ion and binds nucleic acids, participate in the regulation of growth, development, and stress adaptation in plants. Most zinc fingers are C2H2-type or CCCC-type, named after the configuration of cysteine (C) and histidine (H); the less-common CCCH zinc-finger proteins are important in the regulation of plant stress responses. In this review, we introduce the domain structures, classification, and subcellular localization of CCCH zinc-finger proteins in plants and discuss their functions in transcriptional and post-transcriptional regulation via interactions with DNA, RNA, and other proteins. We describe the functions of CCCH zinc-finger proteins in plant development and tolerance to abiotic stresses such as salt, drought, flooding, cold temperatures and oxidative stress. Finally, we summarize the signal transduction pathways and regulatory networks of CCCH zinc-finger proteins in their responses to abiotic stress. CCCH zinc-finger proteins regulate the adaptation of plants to abiotic stress in various ways, but the specific molecular mechanisms need to be further explored, along with other mechanisms such as cytoplasm-to-nucleus shuttling and post-transcriptional regulation. Unraveling the molecular mechanisms by which CCCH zinc-finger proteins improve stress tolerance will facilitate the breeding and genetic engineering of crops with improved traits.
Collapse
Affiliation(s)
- Guoliang Han
- Correspondence: (G.H.); (B.W.); Tel./Fax: +86-531-8618-0197 (B.W.)
| | | | | | | | - Baoshan Wang
- Correspondence: (G.H.); (B.W.); Tel./Fax: +86-531-8618-0197 (B.W.)
| |
Collapse
|
36
|
Hu Y, Han Z, Sun Y, Wang S, Wang T, Wang Y, Xu K, Zhang X, Xu X, Han Z, Wu T. ERF4 affects fruit firmness through TPL4 by reducing ethylene production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:937-950. [PMID: 32564488 DOI: 10.1111/tpj.14884] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 05/23/2023]
Abstract
The firmness of fleshy fruit crops has a significant effect on their quality, consumer preference, shelf life and transportability. In a combined quantitative trait locus and genome-wide association studies study of apple fruit texture, we identified a mutation (C-G) in the ethylene response factor-associated amphiphilic repression (EAR) motif in the coding region of the apple ETHYLENE RESPONSE FACTOR4 (ERF4) gene. Chromatin immunoprecipitation sequencing showed that ERF4 binds to the promoter of ERF3, which is involved in regulation of ethylene biosynthesis. The EAR mutation in ERF4 results in reduced repression of ERF3 expression, which is turn promotes ethylene production and loss of fruit firmness. ERF4 acts as a transcriptional repressor whose activity is modulated by a TOPLESS co-repressor 4 (TPL4)-binding EAR repression motif. Biolayer interferometry analysis showed that the mutation in the EAR motif causes a reduction in the interaction with TPL4. Suppression of ERF4 or TPL4 promoted fruit ripening and ethylene production. Taken together, our results provide insights into how ERF4 allelic variation underlies an important fruit quality trait.
Collapse
Affiliation(s)
- Yanan Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhenyun Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaqiang Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuai Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
37
|
Song Y, Luo G, Shen L, Yu K, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. THE NEW PHYTOLOGIST 2020; 226:1384-1398. [PMID: 31955424 DOI: 10.1111/nph.16435] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2020] [Indexed: 05/20/2023]
Abstract
Starch in wheat grain provides humans with carbohydrates and influences the quality of wheaten food. However, no transcriptional regulator of starch synthesis has been identified first in common wheat (Triticum aestivum) due to the complex genome. Here, a novel basic leucine zipper (bZIP) family transcription factor TubZIP28 was found to be preferentially expressed in the endosperm throughout grain-filling stages in Triticum urartu, the A genome donor of common wheat. When TubZIP28 was overexpressed in common wheat, the total starch content increased by c. 4%, which contributed to c. 5% increase in the thousand kernel weight. The grain weight per plant of overexpression wheat was also elevated by c. 9%. Both in vitro and in vivo assays showed that TubZIP28 bound to the promoter of cytosolic AGPase and enhanced both the transcription and activity of the latter. Knockout of the homologue TabZIP28 in common wheat resulted in declines of both the transcription and activity of cytosolic AGPase in developing endosperms and c. 4% reduction of the total starch in mature grains. To the best of our knowledge, TubZIP28 and TabZIP28 are transcriptional activators of starch synthesis first identified in wheat, and they could be superior targets to improve the starch content and yield potential of wheat.
Collapse
Affiliation(s)
- Yanhong Song
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Kehui Zhan
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Dangqun Cui
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agriculture and Biology Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Aimin Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
38
|
Erfatpour M, Pauls KP. A R2R3-MYB gene-based marker for the non-darkening seed coat trait in pinto and cranberry beans (Phaseolus vulgaris L.) derived from 'Wit-rood boontje'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1977-1994. [PMID: 32112124 PMCID: PMC7237406 DOI: 10.1007/s00122-020-03571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The gene Phvul.010G130600 which codes for a MYB was shown to be tightly associated with seed coat darkening in Phaseolus vulgaris and a single nucleotide deletion in the allele in Wit-rood disrupts a transcription activation region that likely prevents its functioning in this non-darkening genotype. The beige and white background colors of the seed coats of conventional pinto and cranberry beans turn brown through a process known as postharvest darkening (PHD). Seed coat PHD is attributed to proanthocyanidin accumulation and its subsequent oxidation in the seed coat. The J gene is an uncharacterized classical genetic locus known to be responsible for PHD in common bean (P. vulgaris) and individuals that are homozygous for its recessive allele have a non-darkening (ND) seed coat phenotype. A previous study identified a major colorimetrically determined QTL for seed coat color on chromosome 10 that was associated with the ND trait. The objectives of this study were to identify a gene associated with seed coat postharvest darkening in common bean and understand its function in promoting seed coat darkening. Amplicon sequencing of 21 candidate genes underlying the QTL associated with the ND trait revealed a single nucleotide deletion (c.703delG) in the candidate gene Phvul.010G130600 in non-darkening recombinant inbred lines derived from crosses between ND 'Wit-rood boontje' and a regular darkening pinto genotype. In silico analysis indicated that Phvul.010G130600 encodes a protein with strong amino acid sequence identity (70%) with a R2R3-MYB-type transcription factor MtPAR, which has been shown to regulate proanthocyanidin biosynthesis in Medicago truncatula seed coat tissue. The deletion in the 'Wit-rood boontje' allele of Phvul.010G130600 likely causes a translational frame shift that disrupts the function of a transcriptional activation domain contained in the C-terminus of the R2R3-MYB. A gene-based dominant marker was developed for the dominant allele of Phvul.010G130600 which can be used for marker-assisted selection of ND beans.
Collapse
Affiliation(s)
- M Erfatpour
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - K P Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
39
|
Molecular and functional characterization of two DELLA protein-coding genes in litchi. Gene 2020; 738:144455. [PMID: 32061763 DOI: 10.1016/j.gene.2020.144455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
Abstract
DELLA proteins are members of the plant-specific GRAS family, acting as negative regulators of plant growth. In this study, we identified two DELLA protein-coding genes in litchi, denoted as LcGAI and LcRGL1. Motif analysis showed that LcGAI and LcRGL1 proteins both contain a conserved DELLA and TVHYNP motif at the N-terminus as well as LHR1, VHIID, LHR2, PFYRE, and SAW motifs at the C terminus. The fused proteins of LcGAI-GFP and LcRGL1-GFP were both localized in the nucleus. Overexpression of LcGAI and LcRGL1 in Arabidopsis substantially inhibits leaf growth. Expression analysis showed that HLH factors, PRE1 and PRE5, were restrained, whereas gibberellin (GA) receptors GID1a and LcGID1b were enhanced in LcGAI and LcRGL1 overexpression lines. Results of the yeast two-hybrid assay showed that LcGAI and LcRGL1 interact with LcGID1b/LcGID1c in a GA dose-dependent manner, whereas LcGAI and LcRGL1 had a greater binding capacity to LcGID1b than LcGID1c. These observations suggested that LcGAI and LcRGL1 proteins are nuclear growth repressors.
Collapse
|
40
|
Quan W, Liu X, Wang L, Yin M, Yang L, Chan Z. Ectopic expression of Medicago truncatula homeodomain finger protein, MtPHD6, enhances drought tolerance in Arabidopsis. BMC Genomics 2019; 20:982. [PMID: 31842738 PMCID: PMC6916436 DOI: 10.1186/s12864-019-6350-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The plant homeodomain (PHD) finger is a Cys4HisCys3-type zinc finger which promotes protein-protein interactions and binds to the cis-acting elements in the promoter regions of target genes. In Medicago truncatula, five PHD homologues with full-length sequence were identified. However, the detailed function of PHD genes was not fully addressed. RESULTS In this study, we characterized the function of MtPHD6 during plant responses to drought stress. MtPHD6 was highly induced by drought stress. Ectopic expression of MtPHD6 in Arabidopsis enhanced tolerance to osmotic and drought stresses. MtPHD6 transgenic plants exhibited decreased water loss rate, MDA and ROS contents, and increased leaf water content and antioxidant enzyme activities under drought condition. Global transcriptomic analysis revealed that MtPHD6 reprogramed transcriptional networks in transgenic plants. Expression levels of ABA receptor PYR/PYLs, ZINC FINGER, AP2/EREBP and WRKY transcription factors were mainly up-regulated after transformation of MtPHD6. Interaction network analysis showed that ZINC FINGER, AP2/EREBP and WRKY interacted with each other and downstream stress induced proteins. CONCLUSIONS We proposed that ZINC FINGER, AP2/EREBP and WRKY transcription factors were activated through ABA dependent and independent pathways to increase drought tolerance of MtPHD6 transgenic plants.
Collapse
Affiliation(s)
- Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei China
| | - Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Lihua Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei China
| |
Collapse
|
41
|
Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. BMC Genomics 2019; 20:773. [PMID: 31651238 PMCID: PMC6814106 DOI: 10.1186/s12864-019-6080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an "epigenome reader", and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. RESULTS We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. CONCLUSIONS Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.
Collapse
Affiliation(s)
- Intikhab Alam
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cui-Cui Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong-Liu Ge
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khadija Batool
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan-Qing Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun-Hai Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
42
|
Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY, Zhang JS. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca 2+ signaling pathways in transgenic soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:384-398. [PMID: 31271689 DOI: 10.1111/tpj.14449] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors play important roles in response to various abiotic stresses. Previous study have proved that soybean GmWRKY54 can improve stress tolerance in transgenic Arabidopsis. Here, we generated soybean transgenic plants and further investigated roles and biological mechanisms of GmWRKY54 in response to drought stress. We demonstrated that expression of GmWRKY54, driven by either a constitutive promoter (pCm) or a drought-induced promoter (RD29a), confers drought tolerance. GmWRKY54 is a transcriptional activator and affects a large number of stress-related genes as revealed by RNA sequencing. Gene ontology (GO) enrichment and co-expression network analysis, together with measurement of physiological parameters, supported the idea that GmWRKY54 enhances stomatal closure to reduce water loss, and therefore confers drought tolerance in soybean. GmWRKY54 directly binds to the promoter regions of genes including PYL8, SRK2A, CIPK11 and CPK3 and activates them. Therefore GmWRKY54 achieves its function through abscisic acid (ABA) and Ca2+ signaling pathways. It is valuable that GmWRKY54 activates an ABA receptor and an SnRK2 kinase in the upstream position, unlike other WRKY proteins that regulate downstream genes in the ABA pathway. Our study revealed the role of GmWRKY54 in drought tolerance and further manipulation of this gene should improve growth and production in soybean and other legumes/crops under unfavorable conditions.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Wei Liang
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hui Xiao
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Sijacic P, Holder DH, Bajic M, Deal RB. Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome. PLoS Genet 2019; 15:e1008326. [PMID: 31381567 PMCID: PMC6695207 DOI: 10.1371/journal.pgen.1008326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 07/22/2019] [Indexed: 12/01/2022] Open
Abstract
The SWR1 chromatin remodeling complex, which deposits the histone variant H2A.Z into nucleosomes, has been well characterized in yeast and animals, but its composition in plants has remained uncertain. We used the conserved SWR1 subunit ACTIN RELATED PROTEIN 6 (ARP6) as bait in tandem affinity purification experiments to isolate associated proteins from Arabidopsis thaliana. We identified all 11 subunits found in yeast SWR1 and the homologous mammalian SRCAP complexes, demonstrating that this complex is conserved in plants. We also identified several additional proteins not previously associated with SWR1, including Methyl-CpG-BINDING DOMAIN 9 (MBD9) and three members of the Alfin1-like protein family, all of which have been shown to bind modified histone tails. Since mbd9 mutant plants were phenotypically similar to arp6 mutants, we explored a potential role for MBD9 in H2A.Z deposition. We found that MBD9 is required for proper H2A.Z incorporation at thousands of discrete sites, which represent a subset of the genomic regions normally enriched with H2A.Z. We also discovered that MBD9 preferentially interacts with acetylated histone H4 peptides, as well as those carrying mono- or dimethylated H3 lysine 4, or dimethylated H3 arginine 2 or 8. Considering that MBD9-dependent H2A.Z sites show a distinct histone modification profile, we propose that MBD9 recognizes particular nucleosome modifications via its PHD- and Bromo-domains and thereby guides SWR1 to these sites for H2A.Z deposition. Our data establish the SWR1 complex as being conserved across eukaryotes and suggest that MBD9 may be involved in targeting the complex to specific genomic sites through nucleosomal interactions. The finding that MBD9 does not appear to be a core subunit of the Arabidopsis SWR1 complex, along with the synergistic phenotype of arp6;mbd9 double mutants, suggests that MBD9 also has important roles beyond H2A.Z deposition. The histone H2A variant, H2A.Z, is found in all known eukaryotes and plays important roles in transcriptional regulation. H2A.Z is selectively incorporated into nucleosomes within many genes by the activity of a conserved ATP-dependent chromatin remodeling complex in yeast, insects, and mammals. Whether this complex exists in the same form in plants, and how the complex is targeted to specific genomic locations have remained open questions. In this study we demonstrate that plants do indeed utilize a complex analogous to those of fungi and animals to deposit H2A.Z, and we also identify several new proteins that interact with this complex. We found that one such interactor, Methyl-CpG-BINDING DOMAIN 9 (MBD9), is required for H2A.Z incorporation at thousands of genomic sites that share a distinct histone modification profile. The histone binding properties of MBD9 suggest that it may guide H2A.Z deposition to specific sites by interacting with modified nucleosomes and with the H2A.Z deposition complex. We hypothesize that this represents a general paradigm for the targeting of H2A.Z to specific sites.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Dylan H. Holder
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Marko Bajic
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition. Nat Commun 2019; 10:3352. [PMID: 31350403 PMCID: PMC6659704 DOI: 10.1038/s41467-019-11291-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 11/08/2022] Open
Abstract
Deposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here, we aim to identify interacting partners of a conserved Arabidopsis SWR1 subunit ACTIN-RELATED PROTEIN 6 (ARP6). We isolate nine predicted components and identify additional interactors implicated in histone acetylation and chromatin biology. One of the interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacts with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 is required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 is preferentially bound to nucleosome-depleted regions at the 5’ ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes. The SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation, but its composition remains largely uncharacterized in plants. Here, the authors report that methyl-CpG-binding domain 9 (MBD9) is a SWR1-C interacting protein required for histone H2A.Z deposition in Arabidopsis.
Collapse
|
45
|
Zeng A, Chen P, Korth KL, Ping J, Thomas J, Wu C, Srivastava S, Pereira A, Hancock F, Brye K, Ma J. RNA sequencing analysis of salt tolerance in soybean (Glycine max). Genomics 2019; 111:629-635. [PMID: 29626511 DOI: 10.1016/j.ygeno.2018.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023]
Abstract
Salt stress causes foliar chlorosis and scorch, plant stunting, and eventually yield reduction in soybean. There are differential responses, namely tolerance (excluder) and intolerance (includer), among soybean germplasm. However, the genetic and physiological mechanisms for salt tolerance is complex and not clear yet. Based on the results from the screening of the RA-452 x Osage mapping population, two F4:6 lines with extreme responses, most tolerant and most sensitive, were selected for a time-course gene expression study in which the 250 mM NaCl treatment was initially imposed at the V1 stage and continued for 24 h (hrs). Total RNA was isolated from the leaves harvested at 0, 6, 12, 24 h after the initiation of salt treatment, respectively. The RNA-Seq analysis was conducted to compare the salt tolerant genotype with salt sensitive genotype at each time point using RNA-Seq pipeline method. A total of 2374, 998, 1746, and 630 differentially expressed genes (DEGs) between salt-tolerant line and salt-sensitive line, were found at 0, 6, 12, and 24 h, respectively. The expression patterns of 154 common DEGs among all the time points were investigated, of which, six common DEGs were upregulated and seven common DEGs were downregulated in salt-tolerant line. Moreover, 13 common DEGs were dramatically expressed at all the time points. Based on Log2 (fold change) of expression level of salt-tolerant line to salt-sensitive line and gene annotation, Glyma.02G228100, Glyma.03G226000, Glyma.03G031000, Glyma.03G031400, Glyma.04G180300, Glyma.04G180400, Glyma.05 g204600, Glyma.08G189600, Glyma.13G042200, and Glyma.17G173200, were considered to be the key potential genes involving in the salt-tolerance mechanism in the soybean salt-tolerant line.
Collapse
Affiliation(s)
- Ailan Zeng
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA; Monsanto Company, 700 Chesterfield Pkwy W, Chesterfield, MO 63017, USA
| | - Pengyin Chen
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA; Fisher Delta Research Center, University of Missouri, 147 State Hwy T, Portageville, MO 63873, USA.
| | - Ken L Korth
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Subodh Srivastava
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Floyd Hancock
- Former Monsanto Soybean Breeder, 2711 Blacks Ferry Road, Pocahontas, AR 72455, USA
| | - Kristofor Brye
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
47
|
Zheng T, Tan W, Yang H, Zhang L, Li T, Liu B, Zhang D, Lin H. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genet 2019; 15:e1007993. [PMID: 30875369 PMCID: PMC6443190 DOI: 10.1371/journal.pgen.1007993] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/01/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Anthocyanin is part of secondary metabolites, which is induced by environmental stimuli and developmental signals, such as high light and sucrose. Anthocyanin accumulation is activated by the MYB-bHLH-WD40 (MBW) protein complex in plants. But the evidence of how plants maintain anthocyanin in response to signals is lacking. Here we perform molecular and genetic evidence to display that HAT1 plays a new breaker of anthocyanin accumulation via post-translational regulations of MBW protein complex. Loss of function of HAT1 in the Arabidopsis seedlings exhibits increased anthocyanin accumulation, whereas overexpression of HAT1 significantly repressed anthocyanin accumulation. We found that HAT1 interacted with MYB75 and thereby interfered with MBW protein complex. Overexpression of HAT1 suppresses abundant anthocyanin phenotype of pap1-D plant. HAT1 is characterized as a transcriptional repressor possessing an N-terminal EAR motif, which determines to interact with TOPLESS corepressor. Repression activity of HAT1 in regulation of gene expression and anthocyanin accumulation can be abolished by deletion or mutation of the EAR motif 1. Chromatin immunoprecipitation assays revealed that MYB75 formed a transcriptional repressor complex with HAT1-TPL by histone H3 deacetylation in target genes. We proposed that HAT1 restrained anthocyanin accumulation by inhibiting the activities of MBW protein complex through blocking the formation of MBW protein complex and recruiting the TPL corepressor to epigenetically modulate the anthocyanin late biosynthetic genes (LBGs). Anthocyanins, a class of flavonoids distributed ubiquitously in the plant kingdom, are induced by environmental stimuli and developmental signals, such as high light and sucrose. It is well established that anthocyanin accumulation is regulated by the MYB-bHLH-WD40 (MBW) protein complex in plants. But little is known about the regulation of MBW protein complex by other factors. Here, we show that an HD-ZIP II transcription factor HAT1 negatively regulates anthocyanin accumulation via post-translational regulation of MBW protein complex. Loss of function of HAT1 in the Arabidopsis seedlings exhibits increased anthocyanin accumulation, whereas overexpression of HAT1 significantly repressed anthocyanin accumulation. We reveal that HAT1 interacted with MYB75 and thereby sequestered MBW protein complex. Overexpression of HAT1 in pap1-D mutant suppresses abundant anthocyanin phenotype of the pap1-D mutant. HAT1 identified was as a transcriptional repressor possessing an N-terminal EAR motif, which determines the interaction with TOPLESS corepressor. The deletion or mutation of the EAR motif 1 of HAT1 partially eliminates the repression activity of HAT1 in regulation of gene expression and anthocyanin accumulation. Our results illustrate a new repressor HAT1 which helps plants fine-tune anthocyanin accumulation.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Wenrong Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Huan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Li’e Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Taotao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Baohui Liu
- School of Life Science, Guangzhou University, Guangzhou, P.R.China
| | - Dawei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
- * E-mail: (DZ); (HL)
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R.China
- * E-mail: (DZ); (HL)
| |
Collapse
|
48
|
Liu H, Li T, Wang Y, Zheng J, Li H, Hao C, Zhang X. TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:359-376. [PMID: 30226297 DOI: 10.1111/jipb.12720] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
Flowering time is a critical determinant of regional adaptation for crops and has strong effects on crop yields. Here, we report that TaZIM-A1, an atypical GATA-like transcription factor, is a negative regulator of flowering in wheat. TaZIM-A1 possessed weak transcriptional repression activity, with its CCT domain functioning as the major inhibitory region. TaZIM-A1 expression exhibited a typical circadian oscillation pattern under various light regimes. Overexpression of TaZIM-A1 caused a delay in flowering time and a decrease in thousand-kernel weight (TKW) in wheat under long-day conditions. Moreover, TaZIM-A1 directly bound to the promoters of TaCO-1 and TaFT-1 and downregulated their expression. Sequence analysis of a collection of common wheat cultivars identified three and two haplotypes for TaZIM-A1 and TaZIM-B1, respectively. Association analysis revealed that TaZIM-A1-HapI/-HapIII and TaZIM-B1-HapI have undergone strong positive selection during modern wheat breeding, likely due to their association with earlier heading and higher TKW. Diagnostic markers were developed for these haplotypes that can be used for wheat cultivar improvement, via marker-assisted breeding.
Collapse
Affiliation(s)
- Hong Liu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Zheng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Zhang
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
49
|
MePHD1 as a PHD-Finger Protein Negatively Regulates ADP-Glucose Pyrophosphorylase Small Subunit1a Gene in Cassava. Int J Mol Sci 2018; 19:ijms19092831. [PMID: 30235813 PMCID: PMC6164933 DOI: 10.3390/ijms19092831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 11/17/2022] Open
Abstract
ADP-glucose pyrophosphorylase (AGPase) is an important enzyme in the starch synthesis pathway. Its enzyme activity can determine the efficiency of starch biosynthesis. Cassava (Manihot esculenta Crantz) is the main staple crop worldwide and has a high starch content in its storage root. However, the inner regulatory mechanism of AGPase gene family is unclear. MePHD1; a plant homeodomain transcription factor; was isolated through a yeast one-hybrid screening using the promoter of ADP-glucose pyrophosphorylase small subunit1a (MeAGPS1a) as bait, and cassava storage root cDNA library as prey. This factor could bind to the MeAGPS1a promoter in vitro and in vivo, and its predicted binding region ranged from −400 bp to −201 bp, at the translation initiation site. The transcript level of MePHD1 could be induced by five plant hormones, and a temperature of 42 °C. This was down-regulated during the maturation process of the storage root. MePHD1 protein could repress the promoter activity of MeAGPS1a gene by a dual-luciferase assay; which indicated that MePHD1 is a negative regulator for the transcript level of MeAGPS1a gene.
Collapse
|
50
|
Liu Z, Qin J, Tian X, Xu S, Wang Y, Li H, Wang X, Peng H, Yao Y, Hu Z, Ni Z, Xin M, Sun Q. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). PLANT BIOTECHNOLOGY JOURNAL 2018; 16:714-726. [PMID: 28834352 PMCID: PMC5814593 DOI: 10.1111/pbi.12822] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/17/2017] [Accepted: 08/10/2017] [Indexed: 05/13/2023]
Abstract
Plant can acquire tolerance to environmental stresses via transcriptome reprogramming at transcriptional and alternative splicing (AS) levels. However, how AS coordinates with transcriptional regulation to contribute to abiotic stresses responses is still ambiguous. In this study, we performed genome-wide analyses of AS responses to drought stress (DS), heat stress (HS) and their combination (HD) in wheat seedlings, and further compared them with transcriptional responses. In total, we found 200, 3576 and 4056 genes exhibiting significant AS pattern changes in response to DS, HS and HD, respectively, and combined drought and heat stress can induce specific AS compared with individual one. In addition, wheat homeologous genes exhibited differential AS responses under stress conditions that more AS events occurred on B subgenome than on A and D genomes. Comparison of genes regulated at AS and transcriptional levels showed that only 12% of DS-induced AS genes were subjected to transcriptional regulation, whereas the proportion increased to ~40% under HS and HD. Functional enrichment analysis revealed that abiotic stress-responsive pathways tended to be highly overrepresented among these overlapped genes under HS and HD. Thus, we proposed that transcriptional regulation may play a major role in response to DS, which coordinates with AS regulation to contribute to HS and HD tolerance in wheat.
Collapse
Affiliation(s)
- Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinxia Qin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuejun Tian
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Hongxia Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Huiru Peng
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Mingming Xin
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- State Key Laboratory for AgrobiotechnologyKey Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|