1
|
Rochaix JD. Reminiscences of Robert Paul Levine (1927-2022). PHOTOSYNTHESIS RESEARCH 2022; 154:225-228. [PMID: 36107368 PMCID: PMC9630200 DOI: 10.1007/s11120-022-00927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
I present my personal reminiscence of Paul Levine-a highly innovative scientist who did seminal work in photosynthesis. He was among the first to initiate and use a genetic approach toward photosynthesis. He greatly helped in establishing the green unicellular alga Chlamydomonas reinhardtii as a powerful model system not only for understanding the function of the photosynthetic apparatus but also for studying its biogenesis and regulation. During the period he spent at Harvard, he made several ground-breaking contributions such as identifying and establishing the order of some components of the photosynthetic electron transport chain as well as determining their genetic origin. He trained many students and post-doctoral fellows several of whom later became prominent in this field and in other areas of plant science.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
2
|
Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci U S A 2017; 114:13567-13572. [PMID: 29208717 DOI: 10.1073/pnas.1710597114] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The green alga Chlamydomonas reinhardtii is an invaluable reference organism to research fields including algal, plant, and ciliary biology. Accordingly, decades-long standing inefficiencies in targeted nuclear gene editing broadly hinder Chlamydomonas research. Here we report that single-step codelivery of CRISPR/Cpf1 ribonucleoproteins with single-stranded DNA repair templates results in precise and targeted DNA replacement with as much as ∼10% efficiency in C. reinhardtii We demonstrate its use in transgene- and selection-free generation of sequence-specific mutations and epitope tagging at an endogenous locus. As the direct delivery of gene-editing reagents bypasses the use of transgenes, this method is potentially applicable to a wider range of species without the need to develop methods for stable transformation.
Collapse
|
3
|
Cheng X, Liu G, Ke W, Zhao L, Lv B, Ma X, Xu N, Xia X, Deng X, Zheng C, Huang K. Building a multipurpose insertional mutant library for forward and reverse genetics in Chlamydomonas. PLANT METHODS 2017; 13:36. [PMID: 28515773 PMCID: PMC5430608 DOI: 10.1186/s13007-017-0183-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/02/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The unicellular green alga, Chlamydomonas reinhardtii, is a classic model for studying flagella and biofuel. However, precise gene editing, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas9) system, is not widely used in this organism. Screening of random insertional mutant libraries by polymerase chain reaction provides an alternate strategy to obtain null mutants of individual gene. But building, screening, and maintaining such a library was time-consuming and expensive. RESULTS By selecting a suitable parental strain, keeping individual mutants using the agar plate, and designing an insertion cassette-specific primer for library screening, we successfully generated and maintained ~150,000 insertional mutants of Chlamydomonas, which was used for both reverse and forward genetics analysis. We obtained 26 individual mutants corresponding to 20 genes and identified 967 motility-defect mutants including 10 mutants with defective accumulation of intraflagellar transport complex at the basal body. We also obtained 929 mutants defective in oil droplet assembly after nitrogen deprivation. Furthermore, a new insertion cassette with splicing donor sequences at both ends was also constructed, which increased the efficiency of gene interruption. CONCLUSION In summary, this library provides a multifunctional platform both for obtaining mutants of interested genes and for screening of mutants with specific phenotype.
Collapse
Affiliation(s)
- Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Wenting Ke
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Lijuan Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaocui Ma
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Nannan Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaoling Xia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Chunlei Zheng
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|