1
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Carrera-Pacheco SE, Hankamer B, Oey M. Environmental and nuclear influences on microalgal chloroplast gene expression. TRENDS IN PLANT SCIENCE 2023; 28:955-967. [PMID: 37080835 DOI: 10.1016/j.tplants.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.
Collapse
Affiliation(s)
- Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Melanie Oey
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
3
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
4
|
Kück U, Schmitt O. The Chloroplast Trans-Splicing RNA-Protein Supercomplex from the Green Alga Chlamydomonas reinhardtii. Cells 2021; 10:cells10020290. [PMID: 33535503 PMCID: PMC7912774 DOI: 10.3390/cells10020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, RNA trans-splicing is a significant RNA modification process for the end-to-end ligation of exons from separately transcribed primary transcripts to generate mature mRNA. So far, three different categories of RNA trans-splicing have been found in organisms within a diverse range. Here, we review trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. We discuss the origin of intronic sequences and the evolutionary relationship between chloroplast ribonucleoprotein complexes and the nuclear spliceosome. Finally, we focus on the ribonucleoprotein supercomplex involved in trans-splicing of chloroplast group II introns from the green alga Chlamydomonas reinhardtii. This complex has been well characterized genetically and biochemically, resulting in a detailed picture of the chloroplast ribonucleoprotein supercomplex. This information contributes substantially to our understanding of the function of RNA-processing machineries and might provide a blueprint for other splicing complexes involved in trans- as well as cis-splicing of organellar intron RNAs.
Collapse
|
5
|
Macedo-Osorio KS, Martínez-Antonio A, Badillo-Corona JA. Pas de Trois: An Overview of Penta-, Tetra-, and Octo-Tricopeptide Repeat Proteins From Chlamydomonas reinhardtii and Their Role in Chloroplast Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:775366. [PMID: 34868174 PMCID: PMC8635915 DOI: 10.3389/fpls.2021.775366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Penta-, Tetra-, and Octo-tricopeptide repeat (PPR, TPR, and OPR) proteins are nucleus-encoded proteins composed of tandem repeats of 35, 34, and 38-40 amino acids, respectively. They form helix-turn-helix structures that interact with mRNA or other proteins and participate in RNA stabilization, processing, maturation, and act as translation enhancers of chloroplast and mitochondrial mRNAs. These helical repeat proteins are unevenly present in plants and algae. While PPR proteins are more abundant in plants than in algae, OPR proteins are more abundant in algae. In Arabidopsis, maize, and rice there have been 450, 661, and 477 PPR proteins identified, respectively, which contrasts with only 14 PPR proteins identified in Chlamydomonas reinhardtii. Likewise, more than 120 OPR proteins members have been predicted from the nuclear genome of C. reinhardtii and only one has been identified in Arabidopsis thaliana. Due to their abundance in land plants, PPR proteins have been largely characterized making it possible to elucidate their RNA-binding code. This has even allowed researchers to generate engineered PPR proteins with defined affinity to a particular target, which has served as the basis to develop tools for gene expression in biotechnological applications. However, fine elucidation of the helical repeat proteins code in Chlamydomonas is a pending task. In this review, we summarize the current knowledge on the role PPR, TPR, and OPR proteins play in chloroplast gene expression in the green algae C. reinhardtii, pointing to relevant similarities and differences with their counterparts in plants. We also recapitulate on how these proteins have been engineered and shown to serve as mRNA regulatory factors for biotechnological applications in plants and how this could be used as a starting point for applications in algae.
Collapse
Affiliation(s)
- Karla S. Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, México
- *Correspondence: Karla S. Macedo-Osorio,
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
| | - Jesús A. Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Jesús A. Badillo-Corona,
| |
Collapse
|
6
|
Lee K, Park SJ, Colas des Francs-Small C, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1193-1207. [PMID: 31442349 DOI: 10.1111/tpj.14509] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat proteins PPR4 and EMB2654 have been shown to be required for the trans-splicing of plastid rps12 transcripts in Zea mays (maize) and Arabidopsis, respectively, but their roles in this process are not well understood. We investigated the functions of the Arabidopsis and Oryza sativa (rice) orthologs of PPR4, designated AtPPR4 (At5g04810) and OsPPR4 (Os4g58780). Arabidopsis atppr4 and rice osppr4 mutants are embryo-lethal and seedling-lethal 3 weeks after germination, respectively, showing that PPR4 is essential in the development of both dicot and monocot plants. Artificial microRNA-mediated mutants of AtPPR4 displayed a specific defect in rps12 trans-splicing, with pale-green, yellowish or albino phenotypes, according to the degree of knock-down of AtPPR4 expression. Comparison of RNA footprints in atppr4 and emb2654 mutants showed a similar concordant loss of extensive footprints at the 3' end of intron 1a and at the 5' end of intron 1b in both cases. EMB2654 is known to bind within the footprint region in intron 1a and we show that AtPPR4 binds to the footprint region in intron 1b, via its PPR motifs. Binding of both PPR4 and EMB2654 is essential to juxtapose the two intron halves and to maintain the RNAs in a splicing-competent structure for the efficient trans-splicing of rps12 intron 1, which is crucial for chloroplast biogenesis and plant development. The similarity of EMB2654 and PPR4 orthologs and their respective binding sites across land plant phylogeny indicates that their coordinate function in rps12 trans-splicing has probably been conserved for 500 million years.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Whitby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
7
|
Next-Generation Sequencing of Haematococcus lacustris Reveals an Extremely Large 1.35-Megabase Chloroplast Genome. GENOME ANNOUNCEMENTS 2018; 6:6/12/e00181-18. [PMID: 29567741 PMCID: PMC5864939 DOI: 10.1128/genomea.00181-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Haematococcus lacustris is an industrially relevant microalga that is used for the production of the carotenoid astaxanthin. Here, we report the use of PacBio long-read sequencing to assemble the chloroplast genome of H. lacustris strain UTEX:2505. At 1.35 Mb, this is the largest assembled chloroplast of any plant or alga known to date.
Collapse
|
8
|
Reifschneider O, Marx C, Jacobs J, Kollipara L, Sickmann A, Wolters D, Kück U. A Ribonucleoprotein Supercomplex Involved in trans-Splicing of Organelle Group II Introns. J Biol Chem 2016; 291:23330-23342. [PMID: 27645995 DOI: 10.1074/jbc.m116.750570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 02/01/2023] Open
Abstract
In the chloroplast of the green alga Chlamydomonas reinhardtii, two discontinuous group II introns, psaA-i1 and psaA-i2, splice in trans, and thus their excision process resembles the nuclear spliceosomal splicing pathway. Here, we address the question whether fragmentation of trans-acting RNAs is accompanied by the formation of a chloroplast spliceosome-like machinery. Using a combination of liquid chromatography-mass spectrometry (LC-MS), size exclusion chromatography, and quantitative RT-PCR, we provide the first characterization of a high molecular weight ribonucleoprotein apparatus participating in psaA mRNA splicing. This supercomplex contains two subcomplexes (I and II) that are responsible for trans-splicing of either psaA-i1 or psaA-i2. We further demonstrate that both subcomplexes are associated with intron RNA, which is a prerequisite for the correct assembly of subcomplex I. This study contributes further to our view of how the eukaryotic nuclear spliceosome evolved after bacterial endosymbiosis through fragmentation of self-splicing group II introns into a dynamic, protein-rich RNP machinery.
Collapse
Affiliation(s)
| | - Christina Marx
- From the Lehrstuhl für Allgemeine und Molekulare Botanik
| | - Jessica Jacobs
- From the Lehrstuhl für Allgemeine und Molekulare Botanik
| | - Laxmikanth Kollipara
- the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany, and
| | - Albert Sickmann
- the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany, and.,the School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen AB24 3UE, United Kingdom.,the Medizinische Fakultät, Medizinisches Proteom-Center (MPC), and
| | - Dirk Wolters
- the Department of Analytical Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ulrich Kück
- From the Lehrstuhl für Allgemeine und Molekulare Botanik,
| |
Collapse
|