1
|
Cui X, Chen T, Meng Y, Pan X, Wu R, Lu Y, Yao C, Lin X, Ling X. Determining metabolic mechanism linking phospholipids and docosahexaenoic acid through phosphatidylcholine synthesis by phosphocholine cytidylyltransferase (CCT) overexpression in Schizochytrium sp. Microb Cell Fact 2025; 24:81. [PMID: 40186234 PMCID: PMC11969949 DOI: 10.1186/s12934-025-02703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/22/2025] [Indexed: 04/07/2025] Open
Abstract
The polyunsaturated fatty acid (PUFA) metabolism of Schizochytrium, an excellent oil-producing microorganism, is closely related to phosphatidylcholine (PC) synthesis, which favors the migration and accumulation of docosahexaenoic acid (DHA). Phosphocholine cytidylyltransferase (CCT), a key enzyme involved in PC synthesis, profoundly impacts lipid metabolism in plants; however, few studies have focused on CCT in microorganisms. We investigated the effects of CCT overexpression on lipid metabolism in Schizochytrium sp. CCT overexpression slightly inhibited cell growth, but significantly promoted total lipid synthesis. Compared to the wild-type strain, PUFA content and DHA production in the CCT-overexpressing strain (SR21-CCT) increased by about 49% and 46%, respectively. Analysis of phospholipids and quantitative real-time PCR revealed that CCT overexpression enhanced phospholipid synthesis, especially by strengthening glycerophosphorylcholine acylation and de novo PC synthesis pathways, which promote DHA esterification to PC and DHA accumulation in triacylglycerols. This study helps decipher the mechanism correlating phospholipid metabolism and DHA production.
Collapse
Affiliation(s)
- Xiaowen Cui
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, P.R. China
| | - Tingting Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China
| | - Yizhen Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, P.R. China
| | - Ruizhe Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China.
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, P.R. China.
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, P.R. China
| | - Xihuang Lin
- Analysis and Test Center, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, P. R. China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China.
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, P.R. China.
| |
Collapse
|
2
|
Yang Z, Zhang M, Du C. A novel mechanism promoting lipid droplet formation. TRENDS IN PLANT SCIENCE 2025; 30:347-349. [PMID: 39755455 DOI: 10.1016/j.tplants.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Recently, Torres-Romero et al. identified a novel lipid droplet (LD)-associated protein, α/β-hydrolase domain containing protein 1 (ABHD1), in algae. Structurally, ABHD1 promotes the budding and growth of LDs and, functionally, it hydrolyzes lyso-diacylglyceryl-N,N,N-trimethylhomoserine (lyso-DGTS) to generate glyceryl-N,N,N-trimethylhomoserine (GTS) and free fatty acids (FFAs). Taken together, ABHD1 mediates a novel pathway for LD formation.
Collapse
Affiliation(s)
- Zheng Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Xu Y, Zhang Z, Bian Y, Wang Y, Deng Z, Luo R, Li W, Yan J, Zhao B, Sun D. Regulatory Mechanisms of EPA and DHA Proportions in a PUFA-Producing Microalga, Schizochytrium sp. ATCC 20888: From the Biosynthesis and Storage Distribution Aspects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4137-4151. [PMID: 39907569 DOI: 10.1021/acs.jafc.4c12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Schizochytrium sp. ATCC 20888 is an important species for industrial polyunsaturated fatty acids (PUFA) production. This study investigated the regulatory mechanisms affecting the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of biosynthesis and storage distribution. EPA and DHA possessed different accumulation patterns: EPA proportion increased over time, while DHA peaked at 48 h. EPA was predominantly integrated into triacylglycerol during the logarithmic phase and phosphatidylcholine during the stationary phase. Transcriptome analysis revealed that EPA synthesis involved the fatty acid synthase-elongase/desaturase system, while DHA depended mainly on PUFA synthase. Key enzymes, including elongase ELOVL7, diacylglycerol acyltransferase (g10562), and lysophosphatidylcholine acyltransferases (g8836 and g7540), show a positive correlation with EPA yield, highlighting their roles in its biosynthesis and storage. Additionally, phosphopantetheine adenylyl transferase (PPAT/COASY) and ADP-ribosylation factor 1_2 (ARF1_2) were identified as potential regulators of PUFA proportions. This study provided insights for genetic optimization of PUFA production inSchizochytrium.
Collapse
Affiliation(s)
- Yaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanqing Bian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuanhao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziliang Deng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Rui Luo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weijia Li
- Hebei Ruilong Biotechnology Co., Ltd., Shijiazhuang 050024, China
| | - Jingyi Yan
- Hebei Ruilong Biotechnology Co., Ltd., Shijiazhuang 050024, China
| | - Baohua Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Zhang T, Wang Z, Wu L, Liu C, Meng L, Tian F, Hou M, Lin H, Ye J. The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics. TOXICS 2025; 13:64. [PMID: 39853062 PMCID: PMC11768523 DOI: 10.3390/toxics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in Microcystis aeruginosa (M. aeruginosa) were investigated through physiological and nontargeted metabolomic assessments. The results show that 2,6-DCBQ inhibited the growth of M. aeruginosa, reduced its photosynthetic pigment and protein contents, increased the levels of reactive oxygen species, damaged the antioxidant defense system, and aggravated the cytomembrane. Meanwhile, 2,6-DCBQ stimulated the production and release of microcystin-LR (MC-LR) and altered the transcripts of genes associated with its synthesis (mcyA, mcyD) and transport (mcyH). In addition, nontargeted metabolomics of M. aeruginosa cells exposed to 0.1 mg/L 2,6-DCBQ identified 208 differential metabolites belonging to 10 metabolic pathways and revealed the considerable interference caused by 2,6-DCBQ among ABC transporters, the two-component system, and folate biosynthesis. This study deepens the understanding of the physiological and nontargeted metabolomic responses of M. aeruginosa exposed to 2,6-DCBQ, offers insights into the toxic effect of 2,6-DCBQ on M. aeruginosa, and provides a theoretical basis for the ecological risk assessment of emerging DBPs in accordance with water quality criteria.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (T.Z.); (Z.W.); (C.L.); (F.T.); (M.H.)
| | - Zhaoyang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (T.Z.); (Z.W.); (C.L.); (F.T.); (M.H.)
| | - Liang Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
| | - Chaonan Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (T.Z.); (Z.W.); (C.L.); (F.T.); (M.H.)
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China;
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (T.Z.); (Z.W.); (C.L.); (F.T.); (M.H.)
| | - Meifang Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (T.Z.); (Z.W.); (C.L.); (F.T.); (M.H.)
| | - Haizhuan Lin
- College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325000, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (T.Z.); (Z.W.); (C.L.); (F.T.); (M.H.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Sato N, Ikemura E, Uemura M, Awai K. Genomic and biochemical analyses of lipid biosynthesis in Cyanophora paradoxa: limited role of the chloroplast in fatty acid synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:532-545. [PMID: 39377269 PMCID: PMC11714747 DOI: 10.1093/jxb/erae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Archaeplastida, a group of photosynthetic organisms with primary plastids, consists of green algae (plus land plants), red algae, and glaucophytes. In contrast to green and red algae, information on lipids and lipid biosynthesis is still incomplete in the glaucophytes. The chloroplast is the site of photosynthesis and fatty acid synthesis in all photosynthetic organisms known to date. However, the genomic data of the glaucophyte Cyanophora paradoxa indicated the lack of acetyl-CoA carboxylase and most components of fatty acid synthase in the chloroplast. Instead, multifunctional fatty acid synthase and acetyl-CoA carboxylase are likely to reside in the cytosol. To examine this hypothesis, we measured fatty acid synthesis in isolated chloroplasts and whole cells using stable isotope labeling. The chloroplasts had very low fatty acid synthesis activity, if any. Most processes of fatty acid synthesis, including elongation and desaturation, must be performed within the cytosol, and the fatty acids imported into the chloroplasts are assembled into the chloroplast lipids by the enzymes common to other algae and plants. Cyanophora paradoxa is a rare organism in which fatty acid synthesis and photosynthesis are not tightly linked. This could question the common origin of these two biosynthetic processes in Archaeplastida.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Eri Ikemura
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mana Uemura
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Koichiro Awai
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Electronics, Shizuoka University, Chuo-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
6
|
Wang C, Wang R, Hu L, Xi M, Wang M, Ma Y, Chen J, Liu C, Song Y, Ding N, Gao P. Metabolites and metabolic pathways associated with allelochemical effects of linoleic acid on Karenia mikimotoi. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130815. [PMID: 36669412 DOI: 10.1016/j.jhazmat.2023.130815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Linoleic acid (LA) shows great potential in inhibiting the growth of multiple red tide microalgae by disturbing algal physio-biochemical processes. However, our knowledge on the mechanisms of algal mortality at metabolic level remains limited. Herein, the response of K. mikimotoi to LA was evaluated using metabolomics, stable isotope techniques (SIT), and physiological indicators. Results showed that 100 μg/L LA promoted the growth of K. mikimotoi, which was significantly inhibited by 500 μg/L LA, along with a significant reduction of photosynthetic pigments and a significant increase of reactive oxygen species (ROS). SIT showed that LA entered algal cells, and 56 isotopologues involved in ferroptosis, carotenoid biosynthesis, and porphyrin metabolism were identified. Non-targeted metabolomics identified 90 and 111 differential metabolites (DEMs) belonging to 11 metabolic pathways under the 500 μg/L and 100 μg/L LA exposure, respectively. Among them, 34 DEMs were detected by SIT. Metabolic pathway analysis showed that 500 μg/L LA significantly promoted ferroptosis, and significantly inhibited carotenoid biosynthesis, porphyrin metabolism, sphingolipid metabolism, and lipopolysaccharide biosynthesis, presenting changes opposite to those observed in 100 μg/L LA-treated K. mikimotoi. Overall, this study revealed the metabolic response of K. mikimotoi to LA, enriching our understanding on the allelochemical mechanism of LA on K. mikimotoi.
Collapse
Affiliation(s)
- Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Lijun Hu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Muchen Xi
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Mengjiao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yujiao Ma
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yuhao Song
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Ning Ding
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
7
|
Hahm J, Bauer A, Jung S, Zell N, Boßle F, Buchholz R, Lindenberger C. Process Parameter Screening for the Microalga
Chlamydomonas asymmetrica
in Batch and Turbidostat Cultivations. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Sun‐Hwa Jung
- FAU Branch Campus Busan Busan South Korea
- Ostbayerische Technische Hochschule Amberg-Weiden Faculty of Department of Mechanical Engineering/Environmental Technology Amberg Germany
| | - Niklas Zell
- Ostbayerische Technische Hochschule Amberg-Weiden Faculty of Department of Mechanical Engineering/Environmental Technology Amberg Germany
| | - Fabian Boßle
- Ostbayerische Technische Hochschule Amberg-Weiden Faculty of Department of Mechanical Engineering/Environmental Technology Amberg Germany
| | | | - Christoph Lindenberger
- FAU Branch Campus Busan Busan South Korea
- Ostbayerische Technische Hochschule Amberg-Weiden Faculty of Department of Mechanical Engineering/Environmental Technology Amberg Germany
| |
Collapse
|
8
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Murakami H, Kakutani N, Kuroyanagi Y, Iwai M, Hori K, Shimojima M, Ohta H. MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica. FEBS Lett 2020; 594:3384-3394. [PMID: 32770739 DOI: 10.1002/1873-3468.13902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Membrane lipid remodeling under phosphate (Pi) limitation, a process that replaces structural membrane phospholipids with nonphosphorus lipids, is a widely observed adaptive response in plants and algae. Here, we identified the transcription factor phosphorus starvation response 1 (NoPSR1) as an indispensable player for regulating membrane lipid conversion during Pi starvation in the microalga Nannochloropsis oceanica. Knocking out NoPSR1 scarcely perturbed membrane lipid composition under Pi-sufficient conditions but significantly impaired dynamic alteration in membrane lipids during Pi starvation. In contrast, the absence of NoPSR1 led to no obvious change in cell proliferation or storage lipid accumulation under either nutrient-sufficient or Pi-deficient conditions. Our results demonstrate a key factor controlling the membrane lipid profile during the Pi starvation response in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Natsue Kakutani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yunato Kuroyanagi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
10
|
Sato N, Yoshitomi T, Mori-Moriyama N. Characterization and Biosynthesis of Lipids in Paulinella micropora MYN1: Evidence for Efficient Integration of Chromatophores into Cellular Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2020; 61:869-881. [PMID: 32044983 DOI: 10.1093/pcp/pcaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
11
|
Liu YC, Nakamura Y. Triacylglycerol Production in the Snow Algae Chlamydomonas nivalis under Different Nutrient Conditions. Lipids 2019; 54:255-262. [PMID: 31025716 DOI: 10.1002/lipd.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/30/2023]
Abstract
Eukaryotic microalgae have been known for high competency in the accumulation of triacylglycerol (TAG), a representative class of storage lipid. The snow algal species, Chlamydomonas nivalis, is a unique green eukaryotic microalga that can grow and survive in a wide range of temperatures. Although a few metabolomic studies of C. nivalis were conducted, no study has reported on TAG accumulation in C. nivalis. Herein, the present work aimed to investigate TAG production in C. nivalis under nutrient-starved conditions at 22 °C. Compared to phosphorus starvation, C. nivalis under nitrogen starvation showed a less severe growth defect, greater capacity for TAG production, and simple acyl composition in TAG enriched with 18:1. These features suggest that C. nivalis may be a significant model species to investigate glycerolipid metabolism for basic and applied research.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
12
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
13
|
Mori N, Moriyama T, Sato N. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga Cyanidioschyzon merolae. FEBS Open Bio 2018; 9:114-128. [PMID: 30652079 PMCID: PMC6325583 DOI: 10.1002/2211-5463.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Red algae are a large group of photosynthetic eukaryotes that diverged from green algae over one billion years ago, and have various traits distinct from those of both green algae and land plants. Although most red algae are marine species (both unicellular and macrophytic), the Cyanidiales class of red algae includes unicellular species which live in hot springs, such as Cyanidioschyzon merolae, which is a model species for biochemical and molecular biological studies. Lipid metabolism in red algae has previously been studied in intact cells. Here, we present the results of radiolabeling and stable isotope labeling experiments in intact plastids isolated from the unicellular red alga C. merolae. We focused on two uncommon features: First, the galactose moiety of monogalactosyldiacylglycerol was efficiently labeled with bicarbonate, indicating that an unknown pathway for providing UDP-galactose exists within the plastid. Second, saturated fatty acids, namely, palmitic and stearic acids, were the sole products of fatty acid synthesis in the plastid, and they were efficiently exported. This finding suggests that the endoplasmic reticulum is the sole site of desaturation. We present a general principle of red algal lipid biosynthesis, namely, 'indigenous C18 fatty acids are neither desaturated nor directly utilized within the plastid'. We believe that this is valid in both C. merolae lacking polyunsaturated fatty acids and marine red algae with a high content of arachidonic and eicosapentaenoic acids.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Takashi Moriyama
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Naoki Sato
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| |
Collapse
|
14
|
Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases. J Mol Evol 2018; 86:68-76. [PMID: 29330556 DOI: 10.1007/s00239-017-9826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.
Collapse
|
15
|
Hirashima T, Toyoshima M, Moriyama T, Nakamura Y, Sato N. Characterization of phosphoethanolamine-N-methyltransferases in green algae. Biochem Biophys Res Commun 2017; 488:141-146. [DOI: 10.1016/j.bbrc.2017.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
|
16
|
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 2017; 33:74. [DOI: 10.1007/s11274-017-2236-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
17
|
Draft Genome Sequences of Four Species of Chlamydomonas Containing Phosphatidylcholine. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01070-16. [PMID: 27688324 PMCID: PMC5043572 DOI: 10.1128/genomea.01070-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphatidylcholine (PC) is one of the essential phospholipids for most eukaryotes. Although the model green alga Chlamydomonas reinhardtii lacks PC, four species containing PC were found in the genus Chlamydomonas. Here, we report the draft genome sequences of the four species of Chlamydomonas containing PC.
Collapse
|
18
|
Mori N, Moriyama T, Toyoshima M, Sato N. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2016; 7:958. [PMID: 28066454 PMCID: PMC4928187 DOI: 10.3389/fpls.2016.00958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid synthesis in the plastid. We will also discuss on the redundant β-oxidation enzymes, which are characteristic to red algae.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
- *Correspondence: Naoki Sato
| |
Collapse
|