1
|
Li Z, Pollet N. Impact of a horizontally transferred Helitron family on genome evolution in Xenopus laevis. Mob DNA 2025; 16:19. [PMID: 40241130 PMCID: PMC12001565 DOI: 10.1186/s13100-025-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Within eukaryotes, most horizontal transfer of genetic material involves mobile DNA sequences and such events are called horizontal transposable element transfer (HTT). Although thousands of HTT examples have been reported, the transfer mechanisms and their impacts on host genomes remain elusive. RESULTS In this work, we carefully annotated three Helitron families within several Xenopus frog genomes. One of the Helitron family, Heli1Xen1, is recurrently involved in capturing and shuffling Xenopus laevis genes required in early embryonic development. Remarkably, we found that Heli1Xen1 is seemingly expressed in X. laevis and has produced multiple genomic polymorphisms within the X. laevis population. To identify the origin of Heli1Xen1, we searched its consensus sequence against available genome assemblies. We found highly similar copies in the genomes of another 13 vertebrate species from divergent vertebrate lineages, including reptiles, ray-finned fishes and amphibians. Further phylogenetic analysis provides evidence showing that Heli1Xen1 invaded these lineages via HTT quite recently, around 0.58-10.74 million years ago. CONCLUSIONS The frequently Heli1Xen1-involved HTT events among reptiles, fishes and amphibians could provide insights into possible vectors for transfer, such as shared viruses across lineages. Furthermore, we propose that the Heli1Xen1 sequence could be an ideal candidate for studying the mechanism and genomic impact of Helitron transposition.
Collapse
Affiliation(s)
- Zhen Li
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, 91198, France
| | - Nicolas Pollet
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
2
|
Tao XY, Feng SL, Yuan L, Li YJ, Li XJ, Guan XY, Chen ZH, Xu SC. Harnessing transposable elements for plant functional genomics and genome engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00067-6. [PMID: 40240259 DOI: 10.1016/j.tplants.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Transposable elements (TEs) constitute a large portion of many plant genomes and play important roles in regulating gene expression and in driving genome evolution and crop domestication. Despite advances in understanding the functions and mechanisms of TEs, a comprehensive review of their integrated knowledge and cutting-edge biotechnological applications of TEs is still needed. We provide a thorough overview that connects discoveries, mechanisms, and technologies associated with plant TEs. We discuss the identification and function of TEs driven by functional genomics, epigenetic regulation of TEs, and utilization of active TEs in plant functional genomics and genome engineering. In summary, expanding the knowledge and application of TEs will be beneficial to crop breeding and plant synthetic biology in the future.
Collapse
Affiliation(s)
| | | | - Lu Yuan
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yan-Jun Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xin-Jia Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, 5064 SA, Australia.
| | - Sheng-Chun Xu
- Xianghu Laboratory, Hangzhou 311231, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| |
Collapse
|
3
|
Kon T, Kon-Nanjo K, Simakov O. Subtelomeric repeat expansion in Hydractinia symbiolongicarpus chromosomes. Mob DNA 2025; 16:14. [PMID: 40134021 PMCID: PMC11934779 DOI: 10.1186/s13100-025-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Despite the striking conservation of animal chromosomes, their repetitive element complements are vastly diverse. Only recently, high quality chromosome-level genome assemblies enabled identification of repeat compositions along a broad range of animal chromosomes. Here, utilizing the chromosome-level genome assembly of Hydractinia symbiolongicarpus, a colonial hydrozoan cnidarian, we describe an accumulation of a single 372 bp repeat unit in the subtelomeric regions. Based on the sequence divergence, its partial affinity with the Helitron group can be detected. This sequence is associated with a repeated minisatellite unit of about 150 bp. Together, they account for 26.1% of the genome (126 Mb of the 483 Mb). This could explain the genome size increase observed in H. symbiolongicarpus compared with other cnidarians, yet distinguishes this expansion from other large cnidarian genomes, such as Hydra vulgaris, where such localized propagation is absent. Additionally, we identify a derivative of an IS3EU-like DNA element accumulated at the putative centromeric regions. Our analysis further reveals that Helitrons generally comprise a large proportion of H. symbiolongicarpus (11.8%). We investigated Helitron presence and distributions across several cnidarian genomes. We find that in Nematostella vectensis, an anthozoan cnidarian, Helitron-like sequences were similarly accumulated at the subtelomeric regions. All these findings suggest that Helitron derivatives are prone to forming chromosomal extensions in cnidarians through local amplification in subtelomeric regions, driving variable genome expansions within the clade.
Collapse
Affiliation(s)
- Tetsuo Kon
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria.
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, 1030, Austria
| |
Collapse
|
4
|
He B, Liu W, Li J, Xiong S, Jia J, Lin Q, Liu H, Cui P. Evolution of Plant Genome Size and Composition. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae078. [PMID: 39499156 PMCID: PMC11630846 DOI: 10.1093/gpbjnl/qzae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
The rapid development of sequencing technology has led to an explosion of plant genome data, opening up more opportunities for research in the field of comparative evolutionary analysis of plant genomes. In this review, we focus on changes in plant genome size and composition, examining the effects of polyploidy, whole-genome duplication, and alternations in transposable elements on plant genome architecture and evolution, respectively. In addition, to address gaps in the available information, we also collected and analyzed 234 representative plant genome data as a supplement. We aim to provide a comprehensive, up-to-date summary of information on plant genome architecture and evolution in this review.
Collapse
Affiliation(s)
- Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanfei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianyang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Siwei Xiong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jing Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hailin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
5
|
Tunjić-Cvitanić M, García-Souto D, Pasantes JJ, Šatović-Vukšić E. Dominance of transposable element-related satDNAs results in great complexity of "satDNA library" and invokes the extension towards "repetitive DNA library". MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:236-251. [PMID: 38827134 PMCID: PMC11136912 DOI: 10.1007/s42995-024-00218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 06/04/2024]
Abstract
Research on bivalves is fast-growing, including genome-wide analyses and genome sequencing. Several characteristics qualify oysters as a valuable model to explore repetitive DNA sequences and their genome organization. Here we characterize the satellitomes of five species in the family Ostreidae (Crassostrea angulata, C. virginica, C. hongkongensis, C. ariakensis, Ostrea edulis), revealing a substantial number of satellite DNAs (satDNAs) per genome (ranging between 33 and 61) and peculiarities in the composition of their satellitomes. Numerous satDNAs were either associated to or derived from transposable elements, displaying a scarcity of transposable element-unrelated satDNAs in these genomes. Due to the non-conventional satellitome constitution and dominance of Helitron-associated satDNAs, comparative satellitomics demanded more in-depth analyses than standardly employed. Comparative analyses (including C. gigas, the first bivalve species with a defined satellitome) revealed that 13 satDNAs occur in all six oyster genomes, with Cg170/HindIII satDNA being the most abundant in all of them. Evaluating the "satDNA library model" highlighted the necessity to adjust this term when studying tandem repeat evolution in organisms with such satellitomes. When repetitive sequences with potential variation in the organizational form and repeat-type affiliation are examined across related species, the introduction of the terms "TE library" and "repetitive DNA library" becomes essential. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00218-0.
Collapse
Affiliation(s)
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Dpto de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Barro-Trastoy D, Köhler C. Helitrons: genomic parasites that generate developmental novelties. Trends Genet 2024; 40:437-448. [PMID: 38429198 DOI: 10.1016/j.tig.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Helitrons, classified as DNA transposons, employ rolling-circle intermediates for transposition. Distinguishing themselves from other DNA transposons, they leave the original template element unaltered during transposition, which has led to their characterization as 'peel-and-paste elements'. Helitrons possess the ability to capture and mobilize host genome fragments, with enormous consequences for host genomes. This review discusses the current understanding of Helitrons, exploring their origins, transposition mechanism, and the extensive repercussions of their activity on genome structure and function. We also explore the evolutionary conflicts stemming from Helitron-transposed gene fragments and elucidate their domestication for regulating responses to environmental challenges. Looking ahead, further research in this evolving field promises to bring interesting discoveries on the role of Helitrons in shaping genomic landscapes.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
7
|
Pulido M, Casacuberta JM. Transposable element evolution in plant genome ecosystems. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102418. [PMID: 37459733 DOI: 10.1016/j.pbi.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 09/18/2023]
Abstract
The relationship of transposable elements (TEs) with their host genomes has usually been seen as an arms race between TEs and their host genomes. Consequently, TEs are supposed to amplify by bursts of transposition, when the TE escapes host surveillance, followed by long periods of TE quiescence and efficient host control. Recent data obtained from an increasing number of assembled plant genomes and resequencing population datasets show that TE dynamics is more complex and varies among TE families and their host genomes. This variation ranges from large genomes that accommodate large TE populations to genomes that are very active in TE elimination, and from inconspicuous elements with very low activity to elements with high transposition and elimination rates. The dynamics of each TE family results from a long history of interaction with the host in a genome populated by many other TE families, very much like an evolving ecosystem.
Collapse
Affiliation(s)
- Marc Pulido
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
8
|
Li C, Cong C, Liu F, Yu Q, Zhan Y, Zhu L, Li Y. Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. Int J Mol Sci 2023; 24:ijms24076574. [PMID: 37047545 PMCID: PMC10095026 DOI: 10.3390/ijms24076574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Helitrons, a novel type of mysterious DNA transposons discovered computationally prior to bench work confirmation, are components ubiquitous in most sequenced genomes of various eukaryotes, including plants, animals, and fungi. There is a paucity of empirical evidence to elucidate the mechanism of Helitrons transposition in plants. Here, by constructing several artificial defective Helitron (dHel) reporter systems, we aim to identify the autonomous Helitrons (aHel) in maize genetically and to demonstrate the transposition and repair mechanisms of Helitrons upon the dHel-GFP excision in maize. When crossing with various inbred lines, several transgenic lines produced progeny of segregated, purple-blotched kernels, resulting from a leaky expression of the C1 gene driven by the dHel-interrupted promoter. Transcription analysis indicated that the insertion of different dHels into the C1 promoter or exon would lead to multiple distinct mRNA transcripts corresponding to transgenes in the host genome. Simple excision products and circular intermediates of dHel-GFP transposition have been detected from the leaf tissue of the seedlings in F1 hybrids of transgenic lines with corresponding c1 tester, although they failed to be detected in all primary transgenic lines. These results revealed the transposition and repair mechanism of Helitrons in maize. It is strongly suggested that this reporter system can detect the genetic activity of autonomic Helitron at the molecular level. Sequence features of dHel itself, together with the flanking regions, impact the excision activity of dHel and the regulation of the dHel on the transcription level of the host gene.
Collapse
Affiliation(s)
- Chuxi Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunsheng Cong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyuan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Zhang F, Chen F, Schwarzacher T, Heslop-Harrison JS, Teng N. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. ANNALS OF BOTANY 2023; 131:215-228. [PMID: 35639931 PMCID: PMC9904347 DOI: 10.1093/aob/mcac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | |
Collapse
|
10
|
López ME, Roquis D, Becker C, Denoyes B, Bucher E. DNA methylation dynamics during stress response in woodland strawberry ( Fragaria vesca). HORTICULTURE RESEARCH 2022; 9:uhac174. [PMID: 36204205 PMCID: PMC9533225 DOI: 10.1093/hr/uhac174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 05/29/2023]
Abstract
Environmental stresses can result in a wide range of physiological and molecular responses in plants. These responses can also impact epigenetic information in genomes, especially at the level of DNA methylation (5-methylcytosine). DNA methylation is the hallmark heritable epigenetic modification and plays a key role in silencing transposable elements (TEs). Although DNA methylation is an essential epigenetic mechanism, fundamental aspects of its contribution to stress responses and adaptation remain obscure. We investigated epigenome dynamics of wild strawberry (Fragaria vesca) in response to variable ecologically relevant environmental conditions at the DNA methylation level. F. vesca methylome responded with great plasticity to ecologically relevant abiotic and hormonal stresses. Thermal stress resulted in substantial genome-wide loss of DNA methylation. Notably, all tested stress conditions resulted in marked hot spots of differential DNA methylation near centromeric or pericentromeric regions, particularly in the non-symmetrical DNA methylation context. Additionally, we identified differentially methylated regions (DMRs) within promoter regions of transcription factor (TF) superfamilies involved in plant stress-response and assessed the effects of these changes on gene expression. These findings improve our understanding on stress-response at the epigenome level by highlighting the correlation between DNA methylation, TEs and gene expression regulation in plants subjected to a broad range of environmental stresses.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - David Roquis
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Claude Becker
- LMU BioCenter, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
11
|
Gu X, Su Y, Wang T. 转座元件对植物基因组进化、表观遗传和适应性的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Wang Z, Zhao G, Yang Q, Gao L, Liu C, Ru Z, Wang D, Jia J, Cui D. Helitron and CACTA DNA transposons actively reshape the common bread wheat - AK58 genome. Genomics 2022; 114:110288. [DOI: 10.1016/j.ygeno.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
13
|
Tunjić-Cvitanić M, Pasantes JJ, García-Souto D, Cvitanić T, Plohl M, Šatović-Vukšić E. Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome. Int J Mol Sci 2021; 22:ijms22136798. [PMID: 34202698 PMCID: PMC8268682 DOI: 10.3390/ijms22136798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.
Collapse
Affiliation(s)
- Monika Tunjić-Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Universidade de Vigo, Dpto de Bioquímica, Xenética e Inmunoloxía, 36310 Vigo, Spain;
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Tonči Cvitanić
- Rimac Automobili d.o.o., Ljubljanska ulica 7, 10431 Sveta Nedelja, Croatia;
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
- Correspondence:
| |
Collapse
|
14
|
Mobility connects: transposable elements wire new transcriptional networks by transferring transcription factor binding motifs. Biochem Soc Trans 2021; 48:1005-1017. [PMID: 32573687 PMCID: PMC7329337 DOI: 10.1042/bst20190937] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) constitute major fractions of plant genomes. Their potential to be mobile provides them with the capacity to cause major genome rearrangements. Those effects are potentially deleterious and enforced the evolution of epigenetic suppressive mechanisms controlling TE activity. However, beyond their deleterious effects, TE insertions can be neutral or even advantageous for the host, leading to long-term retention of TEs in the host genome. Indeed, TEs are increasingly recognized as major drivers of evolutionary novelties by regulating the expression of nearby genes. TEs frequently contain binding motifs for transcription factors and capture binding motifs during transposition, which they spread through the genome by transposition. Thus, TEs drive the evolution and diversification of gene regulatory networks by recruiting lineage-specific targets under the regulatory control of specific transcription factors. This process can explain the rapid and repeated evolution of developmental novelties, such as C4 photosynthesis and a wide spectrum of stress responses in plants. It also underpins the convergent evolution of embryo nourishing tissues, the placenta in mammals and the endosperm in flowering plants. Furthermore, the gene regulatory network underlying flower development has also been largely reshaped by TE-mediated recruitment of regulatory elements; some of them being preserved across long evolutionary timescales. In this review, we highlight the potential role of TEs as evolutionary toolkits in plants by showcasing examples of TE-mediated evolutionary novelties.
Collapse
|
15
|
Vojvoda Zeljko T, Pavlek M, Meštrović N, Plohl M. Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements. Sci Rep 2020; 10:15107. [PMID: 32934255 PMCID: PMC7492417 DOI: 10.1038/s41598-020-71886-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE's central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome.
Collapse
Affiliation(s)
- Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Martina Pavlek
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
16
|
|
17
|
Tunjić Cvitanić M, Vojvoda Zeljko T, Pasantes JJ, García-Souto D, Gržan T, Despot-Slade E, Plohl M, Šatović E. Sequence Composition Underlying Centromeric and Heterochromatic Genome Compartments of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2020; 11:genes11060695. [PMID: 32599860 PMCID: PMC7348941 DOI: 10.3390/genes11060695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Segments of the genome enriched in repetitive sequences still present a challenge and are omitted in genome assemblies. For that reason, the exact composition of DNA sequences underlying the heterochromatic regions and the active centromeres are still unexplored for many organisms. The centromere is a crucial region of eukaryotic chromosomes responsible for the accurate segregation of genetic material. The typical landmark of centromere chromatin is the rapidly-evolving variant of the histone H3, CenH3, while DNA sequences packed in constitutive heterochromatin are associated with H3K9me3-modified histones. In the Pacific oyster Crassostrea gigas we identified its centromere histone variant, Cg-CenH3, that shows stage-specific distribution in gonadal cells. In order to investigate the DNA composition of genomic regions associated with the two specific chromatin types, we employed chromatin immunoprecipitation followed by high-throughput next-generation sequencing of the Cg-CenH3- and H3K9me3-associated sequences. CenH3-associated sequences were assigned to six groups of repetitive elements, while H3K9me3-associated-ones were assigned only to three. Those associated with CenH3 indicate the lack of uniformity in the chromosomal distribution of sequences building the centromeres, being also in the same time dispersed throughout the genome. The heterochromatin of C. gigas exhibited general paucity and limited chromosomal localization as predicted, with H3K9me3-associated sequences being predominantly constituted of DNA transposons.
Collapse
Affiliation(s)
- Monika Tunjić Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Juan J. Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain; (J.J.P.); (D.G.-S.)
| | - Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain; (J.J.P.); (D.G.-S.)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Praza do Obradoiro, 0, 15705 Santiago de Compostela, Spain
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Tena Gržan
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
- Correspondence: (M.P.); (E.Š.)
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
- Correspondence: (M.P.); (E.Š.)
| |
Collapse
|
18
|
Hu K, Xu K, Wen J, Yi B, Shen J, Ma C, Fu T, Ouyang Y, Tu J. Helitron distribution in Brassicaceae and whole Genome Helitron density as a character for distinguishing plant species. BMC Bioinformatics 2019; 20:354. [PMID: 31234777 PMCID: PMC6591975 DOI: 10.1186/s12859-019-2945-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Helitron is a rolling-circle DNA transposon; it plays an important role in plant evolution. However, Helitron distribution and contribution to evolution at the family level have not been previously investigated. RESULTS We developed the software easy-to-annotate Helitron (EAHelitron), a Unix-like command line, and used it to identify Helitrons in a wide range of 53 plant genomes (including 13 Brassicaceae species). We determined Helitron density (abundance/Mb) and visualized and examined Helitron distribution patterns. We identified more than 104,653 Helitrons, including many new Helitrons not predicted by other software. Whole genome Helitron density is independent from genome size and shows stability at the species level. Using linear discriminant analysis, de novo genomes (next-generation sequencing) were successfully classified into Arabidopsis thaliana groups. For most Brassicaceae species, Helitron density negatively correlated with gene density, and Helitron distribution patterns were similar to those of A. thaliana. They preferentially inserted into sequence around the centromere and intergenic region. We also associated 13 Helitron polymorphism loci with flowering-time phenotypes in 18 A. thaliana ecotypes. CONCLUSION EAHelitron is a fast and efficient tool to identify new Helitrons. Whole genome Helitron density can be an informative character for plant classification. Helitron insertion polymorphism could be used in association analysis.
Collapse
Affiliation(s)
- Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kai Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Helraiser intermediates provide insight into the mechanism of eukaryotic replicative transposition. Nat Commun 2018; 9:1278. [PMID: 29599430 PMCID: PMC5876387 DOI: 10.1038/s41467-018-03688-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Helitrons are eukaryotic DNA transposons that have profoundly affected genome variability via capture and mobilization of host genomic sequences. Defining their mode of action is therefore important for understanding how genome landscapes evolve. Sequence similarities with certain prokaryotic mobile elements suggest a “rolling circle” mode of transposition, involving only a single transposon strand. Using the reconstituted Helraiser transposon to study Helitron transposition in cells and in vitro, we show that the donor site must be double-stranded and that single-stranded donors will not suffice. Nevertheless, replication and integration assays demonstrate the use of only one of the transposon donor strands. Furthermore, repeated reuse of Helraiser donor sites occurs following DNA synthesis. In cells, circular double-stranded intermediates that serve as transposon donors are generated and replicated by Helraiser transposase. Cell-free experiments demonstrate strand-specific cleavage and strand transfer, supporting observations made in cells. Helitrons are eukaryotic DNA transposons that have profoundly affected genome variation due to their ability to capture and mobilize host genomic fragments. Here the authors provide insight into the mechanism of action of these transposons both in cells and in vitro.
Collapse
|
20
|
Chellapan BV, van Dam P, Rep M, Cornelissen BJC, Fokkens L. Non-canonical Helitrons in Fusarium oxysporum. Mob DNA 2016; 7:27. [PMID: 27990178 PMCID: PMC5148889 DOI: 10.1186/s13100-016-0083-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/03/2016] [Indexed: 01/18/2023] Open
Abstract
Background Helitrons are eukaryotic rolling circle transposable elements that can have a large impact on host genomes due to their copy-number and their ability to capture and copy genes and regulatory elements. They occur widely in plants and animals, and have thus far been relatively little investigated in fungi. Results Here, we comprehensively survey Helitrons in several completely sequenced genomes representing the F. oxysporum species complex (FOSC). We thoroughly characterize 5 different Helitron subgroups and determine their impact on genome evolution and assembly in this species complex. FOSC Helitrons resemble members of the Helitron2 variant that includes Helentrons and DINEs. The fact that some Helitrons appeared to be still active in FOSC provided the opportunity to determine whether Helitrons occur as a circular intermediate in FOSC. We present experimental evidence suggesting that at least one Helitron subgroup occurs with joined ends, suggesting a circular intermediate. We extend our analyses to other Pezizomycotina and find that most fungal Helitrons we identified group phylogenetically with Helitron2 and probably have similar characteristics. Conclusions FOSC genomes harbour non-canonical Helitrons that are characterized by asymmetric terminal inverted repeats, show hallmarks of recent activity and likely transpose via a circular intermediate. Bioinformatic analyses indicate that they are representative of a large reservoir of fungal Helitrons that thus far has not been characterized. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0083-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Vadakkemukadiyil Chellapan
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom Campus, Karyavattom PO, Trivandrum, Kerala India ; Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Peter van Dam
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Ben J C Cornelissen
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| |
Collapse
|