1
|
Li C, Li Y, Wang J, Lu F, Zheng L, Yang L, Sun W, Ro DK, Qu X, Wu Y, Zhang Y. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17199. [PMID: 39642193 DOI: 10.1111/tpj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Xanthanolides, also described as seco-guaianolides, are unique sesquiterpene lactones (STLs) with diverse bioactivities. Most of xanthanolides are 12,8-olides based on the position of their lactone ring. The biosynthetic pathway leading to xanthanolides has hitherto been elusive, especially how nature creates the xanthane skeleton is a long-standing question. This study reports the elucidation of a complete biosynthetic pathway to the important 12,8-xanthanolide 8-epi-xanthatin. The xanthane-type backbone is directly derived from the central precursor germacrene-type sesquiterpene, germacrene A acid, via oxidative rearrangement, catalyzed by an unusual cytochrome P450. Subsequently, a 12,8-lactone ring is formed within this xanthane-type backbone resulting in xanthanolides. The biosynthetic pathway for xanthanolides contrasts with the previously unified biosynthetic route for diverse 12,6-guaianolides, in which a 12,6-lactone ring formation precedes the transformation of a germacrene-type skeleton into a guaiane-type structure. The discovery of the full biosynthetic pathway of 8-epi-xanthantin opens new opportunities for producing xanthanolides in microbial organisms using synthetic biology strategies.
Collapse
Affiliation(s)
- Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanjun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fengliu Lu
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lifen Zheng
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenwen Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Alberta, Canada
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Wu Y, Chen X, Hao F, Liu Y, Luo W, Zhu Y, Li L, Han F, Zhang Y, Jiang Y, Xiong X, Ro DK, Shang Y, Huang S, Gou J. Biosynthesis of bridged tricyclic sesquiterpenes in Inula lineariifolia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:658-673. [PMID: 39215638 DOI: 10.1111/tpj.17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Presilphiperfolane-type sesquiterpenes represent a unique group of atypical sesquiterpenoids characterized by their distinctive tricyclic structure. They have significant potential as lead compounds for pharmaceutical and agrochemical development. Herein, we utilized a transcriptomic approach to identify a terpene synthase (TPS) gene responsible for the biosynthesis of rare presilphiperfolane-type sesquiterpenes in Inula lineariifolia, designated as IlTPS1. Through phylogenetic analysis, we have identified the evolutionary conservation of key motifs, including RR(x)8W, DDxxD, and NSE/DTE in IlTPS1, which are shared with other tricyclic sesquiterpene synthases in the TPS-a subfamily of Asteraceae plants. Subsequent biochemical characterization of recombinant IlTPS1 revealed it to be a multiproduct enzyme responsible for the synthesis of various tricyclic sesquiterpene alcohols from farnesyl diphosphate (FPP), resulting in production of seven distinct sesquiterpenes. Mass spectrometry and nuclear magnetic resonance (NMR) spectrometry identified presilphiperfolan-8β-ol and presilphiperfol-7-ene as predominant products. Furthermore, biological activity assays revealed that the products from IlTPS1 exhibited a potent antifungal activity against Nigrospora oryzae. Our study represents a significant advancement as it not only functionally identifies the first step enzyme in presilphiperfolane biosynthesis but also establishes the heterologous bioproduction of these unique sesquiterpenes.
Collapse
Affiliation(s)
- Yingmei Wu
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Xueqing Chen
- Shenzhen Hujia Technology Co., Ltd, HBN Research Institute and Biological Laboratory, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu Liu
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaru Zhu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Li Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Fei Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yunluo Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ying Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dae-Kyun Ro
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Junbo Gou
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Jiangxia Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Ng D, Altamirano-Vallejo JC, Navarro-Partida J, Sanchez-Aguilar OE, Inzunza A, Valdez-Garcia JE, Gonzalez-de-la-Rosa A, Bustamante-Arias A, Armendariz-Borunda J, Santos A. Enhancing Ocular Surface in Dry Eye Disease Patients: A Clinical Evaluation of a Topical Formulation Containing Sesquiterpene Lactone Helenalin. Pharmaceuticals (Basel) 2024; 17:175. [PMID: 38399390 PMCID: PMC10892869 DOI: 10.3390/ph17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this work was to assess the tolerability, safety, and efficacy of an ophthalmic topical formulation containing helenalin from Arnica montana and hyaluronic acid 0.4% (HA) in patients with mild-to-moderate Dry Eye Disease (DED) exhibiting positive Matrix Metalloproteinase 9 (MMP-9) test results. Tolerability and safety were evaluated in 24 healthy subjects. Participants were instructed to apply one drop of the formulation three times a day in the study eye, for 2 weeks, followed by a clinical follow-up of 21 days. Efficacy was studied in 48 DED patients randomized into Study (Group 1/receiving the studied formulation) or Control (Group 2/Receiving HA 0.4% eye lubricant) groups for 1 month. Assessments included an MMP-9 positivity test, conjunctival impression cytology (CIC), Ocular Surface Disease Index (OSDI), non-invasive film tear breakup time (NIBUT), non-invasive average breakup time (NIAvg-BUT), ocular surface staining, Schirmer's test, and meibomiography. A crossover design with an additional 1-month follow-up was applied to both groups. Healthy subjects receiving the studied formulation exhibited good tolerability and no adverse events. Regarding the efficacy study, Group 1 exhibited a statistically significant reduction in the MMP-9 positivity rate compared to Group 2 (p < 0.001). Both Group 1 and Group 2 exhibited substantial improvements in OSDI and NIBUT scores (p < 0.001). However, Group 1 demonstrated a significant improvement in NI-Avg-BUT and Schirmer's test scores (p < 0.001), whereas Group 2 did not (p > 0.05). Finally, after the crossover, the proportion of MMP-9-positive subjects in Group 1 increased from 25% to 91.6%, while Group 2 showed a significant decrease from 87.5% to 20.8%. Overall, the topical formulation containing sesquiterpene helenalin from Arnica montana and hyaluronic acid was well tolerated and exhibited a favorable safety profile. Our formulation reduces DED symptomatology and modulates the ocular surface inflammatory process; this is evidenced by the enhancement of CIC, the improvement of DED-related tear film status, and the reduction of the MMP-9 positivity rate.
Collapse
Affiliation(s)
- Dalia Ng
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Grupo Oftalmologico Acosta, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Juan Carlos Altamirano-Vallejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Oscar Eduardo Sanchez-Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Andres Inzunza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Jorge Eugenio Valdez-Garcia
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Alejandro Gonzalez-de-la-Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | | | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
4
|
Cankar K, Hakkert JC, Sevenier R, Papastolopoulou C, Schipper B, Baixinho JP, Fernández N, Matos MS, Serra AT, Santos CN, Vahabi K, Tissier A, Bundock P, Bosch D. Lactucin Synthase Inactivation Boosts the Accumulation of Anti-inflammatory 8-Deoxylactucin and Its Derivatives in Chicory ( Cichorium intybus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6061-6072. [PMID: 37036799 PMCID: PMC10119987 DOI: 10.1021/acs.jafc.2c08959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
For several sesquiterpene lactones (STLs) found in Asteraceae plants, very interesting biomedical activities have been demonstrated. Chicory roots accumulate the guaianolide STLs 8-deoxylactucin, lactucin, and lactucopicrin predominantly in oxalated forms in the latex. In this work, a supercritical fluid extract fraction of chicory STLs containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin was shown to have anti-inflammatory activity in an inflamed intestinal mucosa model. To increase the accumulation of these two compounds in chicory taproots, the lactucin synthase that takes 8-deoxylactucin as the substrate for the regiospecific hydroxylation to generate lactucin needs to be inactivated. Three candidate cytochrome P450 enzymes of the CYP71 clan were identified in chicory. Their targeted inactivation using the CRISPR/Cas9 approach identified CYP71DD33 to have lactucin synthase activity. The analysis of the terpene profile of the taproots of plants with edits in CYP71DD33 revealed a nearly complete elimination of the endogenous chicory STLs lactucin and lactucopicrin and their corresponding oxalates. Indeed, in the same lines, the interruption of biosynthesis resulted in a strong increase of 8-deoxylactucin and its derivatives. The enzyme activity of CYP71DD33 to convert 8-deoxylactucin to lactucin was additionally demonstrated in vitro using yeast microsome assays. The identified chicory lactucin synthase gene is predominantly expressed in the chicory latex, indicating that the late steps in the STL biosynthesis take place in the latex. This study contributes to further elucidation of the STL pathway in chicory and shows that root chicory can be positioned as a crop from which different health products can be extracted.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Johanna Christina Hakkert
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Robert Sevenier
- Keygene
N.V., Agro Business Park
90, 6708PW Wageningen, Netherlands
| | - Christina Papastolopoulou
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Bert Schipper
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - João P. Baixinho
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Naiara Fernández
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
| | - Melanie S. Matos
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Claudia Nunes Santos
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- iNOVA4Health,
NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM,
Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Khabat Vahabi
- Department
of Cell and Metabolic Biology, Leibniz Institute
of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Alain Tissier
- Department
of Cell and Metabolic Biology, Leibniz Institute
of Plant Biochemistry, 06120 Halle (Saale), Germany
- Martin-Luther-Universität
Halle-Wittenberg, Institut für Pharmazie, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Paul Bundock
- Keygene
N.V., Agro Business Park
90, 6708PW Wageningen, Netherlands
| | - Dirk Bosch
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Zhang Y, Ma L, Su P, Huang L, Gao W. Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 2023; 43:1-21. [PMID: 34865579 DOI: 10.1080/07388551.2021.2003292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As the largest family of natural products, terpenoids play valuable roles in medicine, agriculture, cosmetics and food. However, the traditional methods that rely on direct extraction from the original plants not only produce low yields, but also result in waste of resources, and are not applicable at all to endangered species. Modern heterologous biosynthesis is considered a promising, efficient, and sustainable production method, but it relies on the premise of a complete analysis of the biosynthetic pathway of terpenoids, especially the functionalization processes involving downstream cytochrome P450s. In this review, we systematically introduce the biotech approaches used to discover and characterize plant terpenoid-related P450s in recent years. In addition, we propose corresponding metabolic engineering approaches to increase the effective expression of P450 and improve the yield of terpenoids, and also elaborate on metabolic engineering strategies and examples of heterologous biosynthesis of terpenoids in Saccharomyces cerevisiae and plant hosts. Finally, we provide perspectives for the biotech approaches to be developed for future research on terpenoid-related P450.
Collapse
Affiliation(s)
- Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Cloning and Functional Characterization of Two Germacrene A Oxidases Isolated from Xanthium sibiricum. Molecules 2022; 27:molecules27103322. [PMID: 35630799 PMCID: PMC9145264 DOI: 10.3390/molecules27103322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs’ biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.
Collapse
|
7
|
Cankar K, Hakkert JC, Sevenier R, Campo E, Schipper B, Papastolopoulou C, Vahabi K, Tissier A, Bundock P, Bosch D. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. FRONTIERS IN PLANT SCIENCE 2022; 13:940003. [PMID: 36105709 PMCID: PMC9465254 DOI: 10.3389/fpls.2022.940003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Katarina Cankar,
| | | | | | - Eva Campo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Bert Schipper
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Kitaoka N, Zhang J, Oyagbenro RK, Brown B, Wu Y, Yang B, Li Z, Peters RJ. Interdependent evolution of biosynthetic gene clusters for momilactone production in rice. THE PLANT CELL 2021; 33:290-305. [PMID: 33793769 PMCID: PMC8136919 DOI: 10.1093/plcell/koaa023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other "phytocassane" BGC. This CYP76M8 acts after the CYP99A2/3 from the "momilactone" BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the "momilactone" BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other "phytocassane" BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Juan Zhang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Richard K Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Benjamin Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Yisheng Wu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Bing Yang
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Zhaohu Li
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Authors for correspondence: ,
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- Authors for correspondence: ,
| |
Collapse
|
9
|
Abstract
Lankacidins are a class of polyketide natural products isolated from Streptomyces spp. that show promising antimicrobial activity. Owing to their complex molecular architectures and chemical instability, structural assignment and derivatization of lankacidins are challenging tasks. Herein we describe three fully synthetic approaches to lankacidins that enable access to new structural variability within the class. We use these routes to systematically generate stereochemical derivatives of both cyclic and acyclic lankacidins. Additionally, we access a new series of lankacidins bearing a methyl group at the C4 position, a modification intended to increase chemical stability. In the course of this work, we discovered that the reported structures for two natural products of the lankacidin class were incorrect, and we determine the correct structures of 2,18-seco-lankacidinol B and iso-lankacidinol. We also evaluate the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro. This work grants insight into the rich chemical complexity of this class of antibiotics and provides an avenue for further structural derivatization.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jinagsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Yanmin Yao
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Seul Ki Yeon
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
11
|
Frey M. Traps and Pitfalls-Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules 2020; 25:E1935. [PMID: 32331245 PMCID: PMC7221646 DOI: 10.3390/molecules25081935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
The characterization of plant enzymes by expression in prokaryotic and eukaryotic (yeast and plants) heterologous hosts has widely been used in recent decades to elucidate metabolic pathways in plant secondary metabolism. Yeast and plant systems provide the cellular environment of a eukaryotic cell and the subcellular compartmentalization necessary to facilitate enzyme function. The expression of candidate genes in these cell systems and the identification of the resulting products guide the way for the identification of enzymes with new functions. However, in many cases, the detected compounds are not the direct enzyme products but are caused by unspecific subsequent reactions. Even if the mechanisms for these unspecific reactions are in many cases widely reported, there is a lack of overview of potential reactions that may occur to provide a guideline for researchers working on the characterization of new enzymes. Here, an across-the-board summary of rearrangement reactions of sesquiterpenes in metabolic pathway engineering is presented. The different kinds of unspecific reactions as well as their chemical and cellular background are explained and strategies how to spot and how to avoid these unspecific reactions are given. Also, a systematic approach of classification of unspecific reactions is introduced. It is hoped that this mini-review will stimulate a discussion on how to systematically classify unspecific reactions in metabolic engineering and to expand this approach to other classes of plant secondary metabolites.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Dept. of Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| |
Collapse
|
12
|
Liu B, Yan J, Li W, Yin L, Li P, Yu H, Xing L, Cai M, Wang H, Zhao M, Zheng J, Sun F, Wang Z, Jiang Z, Ou Q, Li S, Qu L, Zhang Q, Zheng Y, Qiao X, Xi Y, Zhang Y, Jiang F, Huang C, Liu C, Ren Y, Wang S, Liu H, Guo J, Wang H, Dong H, Peng C, Qian W, Fan W, Wan F. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat Commun 2020; 11:340. [PMID: 31953413 PMCID: PMC6969026 DOI: 10.1038/s41467-019-13926-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 11/08/2022] Open
Abstract
Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79 Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.
Collapse
Affiliation(s)
- Bo Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Li
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lijuan Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong province, College of Life Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hanxia Yu
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Longsheng Xing
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Minling Cai
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Hengchao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengxin Zhao
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jin Zheng
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Feng Sun
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhen Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoyang Jiang
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qiaojing Ou
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Shubin Li
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lu Qu
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qilei Zhang
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yaping Zheng
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xi Qiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yan Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Fan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cong Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Conghui Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuwei Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Sen Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hangwei Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jianyang Guo
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haihong Wang
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong province, College of Life Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Dong
- Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Changlian Peng
- Institute of Ecological Science, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring; School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Wanqiang Qian
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Fanghao Wan
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
Frey M, Schmauder K, Pateraki I, Spring O. Biosynthesis of Eupatolide-A Metabolic Route for Sesquiterpene Lactone Formation Involving the P450 Enzyme CYP71DD6. ACS Chem Biol 2018; 13:1536-1543. [PMID: 29758164 DOI: 10.1021/acschembio.8b00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sesquiterpene lactones are a class of natural compounds well-known for their bioactivity and are characteristic for the Asteraceae family. Most sesquiterpene lactones are considered derivatives of germacrene A acid (GAA). GAA can be stereospecifically hydroxylated by the cytochrome P450 enzymes (CYP) Lactuca sativa costunolide synthase CYP71BL2 (LsCOS) and Helianthus annuus GAA 8β-hydroxylase CYP71BL1 (HaG8H) at C6 (in α-orientation) or C8 (in β-orientation), respectively. Spontaneous subsequent lactonization of the resulting 6α-hydroxy-GAA leads to costunolide, whereas 8β-hydroxy-GAA has not yet been reported to cyclize to a sesquiterpene lactone. Sunflower and related species of the Heliantheae tribe contain sesquiterpene lactones mainly derived from inunolide (7,8-cis lactone) and eupatolide (8β-hydroxy-costunolide) precursors. However, the mechanism of 7,8-cis lactonization in general, and the 6,7-trans lactone formation in the sunflower tribe, remain elusive. Here, we show that, in plant cells, heterologous expression of CYP71BL1 leads to the formation of inunolide. Using a phylogenetic analysis of enzymes from the CYP71 family involved in sesquiterpenoid metabolism, we identified the CYP71DD6 gene, which was able to catalyze the 6,7-trans lactonization in sunflowers, using as a substrate 8β-hydroxy-GAA. Consequently, CYP71DD6 resulted in the synthesis of eupatolide, thus called HaES ( Helianthus annuus eupatolide synthase). Thus, our study shows the entry point for the biosynthesis of two distinct types of sesquiterpene lactones in sunflowers: the 6,7-trans lactones derived from eupatolide and the 7,8-cis lactones derived from inunolide. The implications for tissue-specific localization, based on expression studies, are discussed.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Katharina Schmauder
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Irini Pateraki
- Department of Plant and Environment al Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|